Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – Having insulated gate
Reexamination Certificate
1998-11-17
2001-01-09
Trinh, Michael (Department: 2822)
Semiconductor device manufacturing: process
Making field effect device having pair of active regions...
Having insulated gate
C438S155000, C438S237000, C438S264000, C438S381000
Reexamination Certificate
active
06171905
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device functioning as a bistable memory or a logic circuit and including a MIS semiconductor element, a hot electron transistor, a resonance tunnel diode, that is, a non-linear element, and the like formed on a common substrate, and also to a method of manufacturing the semiconductor device.
Recently, various types of elements whose operational principle is totally different from that of a MIS semiconductor element have been proposed, and a resonance tunnel element is one of these recently proposed elements. A resonance tunnel element has a “double barrier structure”, in which a semiconductor thin film, having a thickness sufficiently small to cause a quantum effect, is sandwiched between energy barrier films of an oxide film or the like and electrodes are formed on the outer faces of the energy barrier films. The electric characteristic of the resonance tunnel element is controlled by a resonance tunnel effect that application of a given voltage between the two electrodes simultaneously causes tunneling of electrons between the semiconductor thin film and the two electrodes. Many of conventional resonance tunnel diodes are obtained by using a compound semiconductor (Tsu, Esaki et al., Appl. Phys. Lett., 22, 562 (1973), etc.). This is because the compound semiconductor has the following advantages: The compound semiconductor is a direct transition type semiconductor material and has a small effective mass, in which the resonance tunnel effect can be easily caused; the compound semiconductor can be used as an energy barrier film because of its semi-insulating property; and the compound semiconductor can be easily formed into a thin film by utilizing the epitaxial growth because it is a crystalline material.
In contrast, there is a demand for a resonance tunnel element made from a general semiconductor material such as silicon because the compound semiconductor has limited application in view of the manufacturing cost. However, silicon is an indirect transition type semiconductor material, and its effective mass is larger, namely, the mobility is smaller, than that of the compound semiconductor and hence, the resonance tunnel effect cannot be easily caused. In addition, when silicon is used, a silicon oxide film, a silicon nitride film or the like is used as the energy barrier film, but the silicon oxide film or the like is an amorphous material and hence is very difficult to be formed by the epitaxial growth.
On the other hand, another example of the elements utilizing the quantum effect apart from the resonance tunnel element includes a hot electron transistor. The hot electron transistor has the “double barrier structure”, in which a semiconductor thin film, having a thickness sufficiently small to cause the quantum effect, is sandwiched between energy barrier films of an oxide film or the like and electrodes are formed on the outer faces of the energy barrier films. In this structure, when a voltage is applied between one electrode and the semiconductor film, hot electrons tunnel through one energy barrier film to be injected into the semiconductor film from the electrode. The injected electrons lose their energy within the semiconductor thin film owing to the lattice vibration or the like, but when the semiconductor film is thin, a certain proportion of the electrons can pass through the semiconductor film. Since another energy barrier film is formed in contact with the semiconductor film, hot electrons alone can reach another electrode through this energy barrier film. Electric power can be amplified by making a current flowing from one electrode through the semiconductor film to the other electrode be larger than a current flowing from one electrode into the semiconductor thin film by providing any structural means. Such an element can be advantageously operated normally even at a low temperature because it does not include a pn junction as a bipolar element. Many of conventional hot electron transistors are realized by using a compound semiconductor. This is because the compound semiconductor can be used as an energy barrier film because of its semi-insulating property and can be easily formed into a very thin semiconductor film by the epitaxial growth since it is a crystalline material.
Although the resonance tunnel diode is an element with a large number of possibilities, it is difficult to constitute a variety of circuits by using the tunnel diode alone because it has merely two terminals, i.e., two electrodes.
Furthermore, with regard to the hot electron transistor, the usage of the compound semiconductor limits its application in view of the manufacturing cost, and there is a demand for a hot electron transistor made from a general semiconductor material such as silicon. However, since silicon is not a semi-insulating semiconductor material, a silicon oxide film, a silicon nitride film or the like is used as an energy barrier film. Therefore, in order to sandwich a semiconductor thin film with two energy barrier films, it is necessary to form a monocrystalline silicon film on the silicon oxide film or the like. However, it is very difficult to epitaxially grow the monocrystalline silicon film on the silicon oxide film or the like, that is, a film of an amorphous material, because lattice mismatching is caused in such a case.
SUMMARY OF THE INVENTION
A first object of the invention is providing a semiconductor device having a variety of functions such as a bistable memory and a multi-valued logic circuit through combination of a resonance tunnel diode, that is, a non-linear element, and a MIS semiconductor element.
A second object of the invention is providing a practical method of manufacturing a semiconductor device utilizing a manufacturing process for a general MOS semiconductor device, so that a MIS semiconductor element and a resonance tunnel diode can be formed on a common substrate in as few processes as possible.
A third object of the invention is providing a semiconductor device having a variety of functions and a method of manufacturing the semiconductor device by making a hot electron transistor having a function corresponding to that of a bipolar transistor have a structure applicable to a silicon process.
For achieving the first object, the invention provides first through third semiconductor devices.
The first semiconductor device, functioning as a bistable memory cell or a logic circuit, of this invention comprises a resonance tunnel diode including first and second conductive portions and a resonance tunneling portion interposed between the first and second conductive portions; and a MIS semiconductor element including a gate electrode and source/drain electrodes, wherein the resonance tunnel diode and the MIS semiconductor element are formed on a common substrate, and at lest one of the source/drain electrodes of the MIS semiconductor element is electrically connected with at least one of the first and second conductive portions of the resonance tunnel diode.
Thus, various types of circuits having a variety of functions can be attained through the combination of a MIS semiconductor element and a resonance tunnel diode.
In one aspect, the resonance tunneling portion of the resonance tunnel diode can include a very thin Si layer sandwiched between two tunnel insulating films.
Thus, the resonance tunnel diode and the MIS semiconductor element can be mounted on the common silicon substrate, and hence, a semiconductor device mounting both an inexpensive Si type quantum device and a MIS semiconductor element can be practically realized.
In another aspect, the MIS semiconductor element can be a depletion type semiconductor element, the gate electrode and the source electrode of the MIS semiconductor element can be short-circuited to be connected with a power terminal, the drain electrode of the MIS semiconductor element and one of the first and second conductive portions of the resonance tunnel diode can be connected with a common control terminal, and the semiconductor device ca
Araki Kiyoshi
Morimoto Kiyoshi
Morita Kiyoyuki
Yuki Koichiro
Matsushita Electric - Industrial Co., Ltd.
McDermott & Will & Emery
Trinh Michael
LandOfFree
Semiconductor device and method of manufacturing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Semiconductor device and method of manufacturing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device and method of manufacturing the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2462155