Flash memory with microcrystalline silicon carbide film floating

Active solid-state devices (e.g. – transistors – solid-state diode – Specified wide band gap semiconductor material other than... – Diamond or silicon carbide

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

257314, 257321, 257407, 257412, 257741, H01L 2972

Patent

active

061664014

ABSTRACT:
A memory is described which has memory cells that store data using hot electron injection. The data is erased through electron tunneling. The memory cells are described as floating gate transistors wherein the floating gate is fabricated using a conductive layer of microcrystalline silicon carbide particles. The microcrystalline silicon carbide particles are in contact such that a charge stored on the floating gate is shared between the particles. The floating gate has a reduced electron affinity to allow for data erase operations using lower voltages.

REFERENCES:
patent: 4507673 (1985-03-01), Aoyama et al.
patent: 5021999 (1991-06-01), Kohda et al.
patent: 5027171 (1991-06-01), Reedy et al.
patent: 5111430 (1992-05-01), Morie
patent: 5253196 (1993-10-01), Shimabukuro
patent: 5260593 (1993-11-01), Lee
patent: 5293560 (1994-03-01), Harari
patent: 5317535 (1994-05-01), Talreja et al.
patent: 5357134 (1994-10-01), Shimoji
patent: 5388069 (1995-02-01), Kokubo
patent: 5418743 (1995-05-01), Tomioka et al.
patent: 5424993 (1995-06-01), Lee et al.
patent: 5430670 (1995-07-01), Rosenthal
patent: 5434815 (1995-07-01), Smarandoiu et al.
patent: 5438544 (1995-08-01), Makino
patent: 5449941 (1995-09-01), Yamazaki et al.
patent: 5465249 (1995-11-01), Cooper et al.
patent: 5467306 (1995-11-01), Kaya et al.
patent: 5477485 (1995-12-01), Bergemont et al.
patent: 5485422 (1996-01-01), Bauer et al.
patent: 5493140 (1996-02-01), Iguchi
patent: 5508543 (1996-04-01), Hartstein et al.
patent: 5580380 (1996-12-01), Liu et al.
patent: 5627781 (1997-05-01), Hayashi et al.
patent: 5670790 (1997-09-01), Katoh et al.
patent: 5801401 (1998-09-01), Forbes
Akasaki, I., et al., "Effects of AlN Buffer Layer on Crystallographic Structure and on Electrical and Optical Properties of GaN and Ga(1-x)Al(x)N [0< x (< or =) 0.4] Films Grown on Sapphire Substrate by MOVPE", J. Crystal Growth, 98, 209-219, (1989) Jan.
Alok, D., et al., "Electrical Properties of Thermal Oxide Grown on N-type 6H-Silicon Carbide", Applied Physcis Letters, 64, 2845-2846, (May 23, 1994).
Andrieux, M., et al., "Interface and Adhesion of PACVD SiC Based Films on Metals", Supp. Le Vide: science, technique et applications, 279, 212-214, (1996) Jan.
Bachmann, P., et al., "Influence on Surface Modifications on the Electronic Properties of CVD Diamond Films", Diamond and Related Materials, 5, 1378-1383, (1996) Jan.
Baglee, D., "Characteristics & Reliability of 100 Angstrom Oxides", IEEE 22nd Annual Proc.: Reliability Physics, Las Vegas, 152-155, (Apr. 3-5, 1984).
Baldwin, G.L., et al., "The Electronic Conduction Mechanism of Hydrogenated Nanocrystalline Silicon Films", Proc. 4th Int. Conf. on Solid-State and Int. Circuit Tech, Beijing, 66-68, (1995) Jan.
Bauer, M., et al., "A Multilevel-Cell 32 Mb Flash Memory", Digest IEEE, Solid-State Circuits Conf.,, 440, (1995) Jan.
Beheim, G., et al., "Magnetron Plasma Etching of SiC for Microstructures", Proc: SPIE--Integrated Optics and Microstructures III, San Jose, CA, 82-86, (Jan. 29, 1996).
Bengtsson, S., et al., "Applications of Aluminum Nitride Films Deposited by Reactive Sputtering to Silicon-On-Insulator Materials", Japanese J. Applied Physics, 35, 4175-4181, (1996) Jan.
Benjamin, M., et al., "UV Photoemission Study of Heteroepitaxial AlGaN Films Grown on 6H-Sic", Applied Surface Science, 104/105, 455-460, (1996) Jan.
Bermudez, V., et al., "The Growth and Properties of Al and AlN Films on GaN(0001)-(1.times.1)", J. Applied Physics, 79, 110-119, (Jan. 1996).
Boeringer, D.W., et al., "Avalanche amplification of multiple resonant tunneling through parallel silicon microcrystallites", Physical Rev. B, 51, 13337-13343, (1995) Jan.
Casey, H., et al., "Low Interface Trap Density for Remote Plasma Deposited SiO2 on n-type GaN", Applied Phys. Lett., 68, 1850-1852, (Mar. 1996).
Choi, J., et al., "Effect of Deposition Conditions and Pretreatments on the Microstructure of MPECVD Diamond Thin Films", Materials Chemistry and Physics, 45, 176-179, (1996) Jan.
Clarke, G., et al., "The Infrared Properties of Magnetron-Sputtered Diamond-Like Thin Films", Thin Solid Films, 280, 130-135, (1996) Jan.
Compagnini, G., et al., "Spectroscopic Characterization of Annealed Si(1-x)C(x) Films", J. Materials Res., 11, 2269-2273, (Sep. 1996).
Dartnell, N., et al., "Reactive Ion Etching of Silicon Carbide (Si(x)C(1-x))", Vacuum, 46, 349-355, (1995) Jan.
Demichelis, F., et al., "Influence of Doping on the Structural and Optoelectronic Properties of Amorphous and Microcrystalline Silicon Carbide", Journal of Applied Physics, 72, 1327-1333, (Aug. 15, 1992).
Demichelis, F., et al., "Physical Properties of Undoped and Doped Microcrystalline SiC:H Deposited By PECVD", Materials Research Society Symposium Proceedings, 219, Anaheim, CA, 413-418, (Apr. 30-May 3, 1991).
Dipert, B., et al., "Flash Memory Goes Mainstream", IEEE Spectrum, 30, 48-52, (1993) Jan.
Edelberg, E., et al., "Visible Luminescence from Nanocrystallie silicon films produced by plasma enhanced chemical vapor deposition", Appl. Phys. Lett., 68, 1415-1417, (1996) Jan.
Fissel, A., et al., "Epitaxial Growth of SiC Thin Films on Si-stabilized alph-SiC (0001) at Low Temperatures by Solid-source Molecular Beam Epitaxy", Journal of Crystal Growth, 154, 72-80, (1995) Jan.
Friedrichs, P., et al., "Interface Properties of Metal-Oxide-Semiconductor Structures on N-Type 6H and 4H-SiC", J. Applied Physics, 79, 7814-7819, (May 15, 1996).
Fujii, T., et al., "Bonding Structures in Highly Photoconductive a-SiC:H Films Deposited by Hybrid-Plasma Chemical Vapor Deposition", Journal of Non-Crystalline Solids, 198-200, 577-581, (1996) Jan.
Goetzberger, A., et al., Applied Solid State Science: Advances in Materials and Device Research, R. Wolfe, ed., Academic Press, New York, Including p. 233, (1969) Jan.
Graul, J., et al., "Growth Mechanism of Polycrystalline beta-SiC Layers on Silicon Substrate", Applied Phys. Lett., 21, 67-69, (Jul. 1972).
Hamakawa, Y., et al., "Optoelectronics and Photovoltaic Applications of Microcrystalline SiC", Materials Research Society Symposium Proceedings, 164, Boston, MA, 291-301, (Nov. 29-Dec. 1, 1989).
He, Z., et al., "Ion-beam-assisted Deposition of Si-carbide Films", Thin Solid Films, 260, 32-37, (1995) Jan.
Hu, G., "Will Flash Memory Replace Hard Disk Drive?", IEEE Electron Devices Meeting , Session 24, (Dec. 13, 1994).
Hwang, J., et al., "High Mobility beta-SiC Epilayer Prepared by Low-pressure Rapid Thermal Chemical Vapor Deposition on a (100) Silicon Substrate", Thin Solid Films, 272, 4-6, (1996) Jan.
Hybertsen, M.S., "Absorption and Emission of Light in Nanoscale Silicon Structures", Phys. Rev. Lett., 72, 1514-1517, (1994) Jan.
Jou, S., et al., "Electron Emission Characterization of Diamond Thin Films Grown from a Solid Carbon Source", Thin Solid Films, 280, 256-261, (1996) Jan.
Jung, T.S., et al., "A 3.3V, 128Mb Multi-Level NAND Flash Memory for Mass Storage Applications", 1996 IEEE Solid-State Circuits Conf., Digest of Technical Papers, 512, (1996) Jan.
Kamata, T., et al., "Substrate Current Due to Impact Ionization in MOS-FET", Japan. J. Appl. Phys., 15, 1127-1134, (Jun. 1976).
Kato, M., et al., "Read-Disturb Degradation Mechanism due to Electron Trapping in the Tunnel Oxide for Low-voltage Flash Memories", IEEE Electron Device Meeting, 45-48, (1994) Jan.
Kothandaraman, M., et al., "Reactive Ion Etching of Trenches in 6H-SiC", J. Electronic Materials, 25, 875-878, (1996) Jan.
Kumbhar, A., et al., "Growth of Clean Amorphous Silicon-Carbon Alloy Films by Hot-Filament Assisted Chemical Vapor Deposition Technique", Applied Phys. Lett, 66, 1741-1743, (Apr. 1995).
Lakshmi, E., et al., "Interface-State Characteristics of GaN/GaAs MIS Capacitors", Solid-State Electronics, 25, 811-815, (1982) Jan.
Lanois, F., et al., "Angle Etch Control of Silicon Carbide Power Devices", Applied Phys. Lett., 69, 236-238, (Jul. 1996).
Lau, S., et al., "Optoelectronic Properties of Highly Conductive Microcrystalline SiC Produced by Laser Crystallization of Amorphous SiC", J. of Non-Crystalline Solids, 198-200, 907-910, (1996) Jan.
Leggieri, G., et al., "Laser Ablation Deposi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flash memory with microcrystalline silicon carbide film floating does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flash memory with microcrystalline silicon carbide film floating, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flash memory with microcrystalline silicon carbide film floating will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-997765

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.