Multibit metal nanocrystal memories and fabrication

Static information storage and retrieval – Systems using particular element – Semiconductive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S185010, C365S185180

Reexamination Certificate

active

10718662

ABSTRACT:
Metal nanocrystal memories are fabricated to include higher density states, stronger coupling with the channel, and better size scalability, than has been available with semiconductor nanocrystal devices. A self-assembled nanocrystal formation process by rapid thermal annealing of ultra thin metal film deposited on top of gate oxide is integrated with NMOSFET to fabricate such devices. Devices with Au, Ag, and Pt nanocrystals working in the F-N tunneling regime, with hot-carrier injection as the programming mechanism, demonstrate retention times up to 106s, and provide 2-bit-per-cell storage capability.

REFERENCES:
patent: 5559057 (1996-09-01), Goldstein
patent: 5679171 (1997-10-01), Saga et al.
patent: 6090666 (2000-07-01), Ueda et al.
patent: 6128214 (2000-10-01), Kuekes et al.
patent: 6141256 (2000-10-01), Forbes
patent: 6172905 (2001-01-01), White et al.
patent: 6320784 (2001-11-01), Muralidhar et al.
patent: 6400610 (2002-06-01), Sadd
patent: 6434053 (2002-08-01), Fujiwara
patent: 6472705 (2002-10-01), Bethune et al.
patent: 6643165 (2003-11-01), Segal et al.
patent: 6768165 (2004-07-01), Eitan
patent: 6831310 (2004-12-01), Mathew et al.
patent: 6992349 (2006-01-01), Lee et al.
J.R. Tucker, “Schottky barrier MOSFETs for Silicon nanoelectronics,” Advanced Workshop on Frontiers in Electronics, WOFE'97 Proceedings, pp. 97-100, 1997.
C. Wang, J.P. Snyder and J.R. Tucker, “Sub-40 nm PtSi Schottky source/drain metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett, vol. 74, pp. 1174-1176, 1999.
V. Narayanan, Z. Liu, Y.M.N. Shen, M. Kim and E.C. Kan, “Reduction of metal-semiconductor contact resistance by embedded nanocrystals,” IEDM Tech. Dig., pp. 87-90. 2000.
E.C. Kan and Z. Liu, “Directed self-assembly process for nano-electronic devices and interconnect,” Superlattices and Microstructures, vol. 27, pp. 473-479, 2000.
Z. Liu, M. Kim, V. Narayanan, and E.C. Kan, “Process and device characteristics of self-assembled metal nano-crystal EEPROM,” Superlattices and Microstructures, vol. 28, pp. 393-399. 2000.
Z. Suo and Z. Zhang, Epitaxial films stabilized by long range forces, Phys. Rev. B, vol. 58, pp. 5116-5120, 1998.
D.A. Bonnell, Y. Liang, M. Wagner, D. Carroll and M. Buhle, “Effect of size dependent interface properties on stability of metal clusters on ceramic substrates,” Acta Mater., vol. 46, pp. 2263-2270, 1998.
Z. Liu, V. Narayanan, M. Kim, G. Pei and E.C. Kan, “Low programming voltages and long retention time in metal nanocrystal EEPROM devices,” 59th DRC Tech. Dig., pp. 79-80, 2001.
H.C. Lin, E.C. Kan, T. Yamanaka & C.R. Helms, “Modeling and characterization of Si/SiO2 interface roughness,” VLSI Tech. Symp., Kyoto, Japan, Jun. 1997.
J. Kedzierski, P. Xuan, E.H. Anderson, J. Bokor, T.J. King and C. Hu, “Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime,” IEDM Tech. Dig., pp. 57-60, 2000.
J. Kedzierski, P. Xuan, V. Subramanian, E.H. Anderson, J. Bokor, T.J. King and C. Hu, “A 20-nm gate-length ultra-thin body p-MOSFET with silicide source/drain,” Si Nanoelectronics Workshop, VLSI Tech. Symp., pp. 13-15, Honolulu, Hawaii, Jun. 2000.
C. Diorio, P. Hasler, B.A. Minch and C.A. Mead, “A floating-gate MOS learning array with locally computed weight updates,” IEEE Trans. Electron Devices, vol. 44, pp. 2281-2289, 1977.
“The Evolution of Dram Cell Technology,” B. El-Kareh, G.B. Bronner; Solid State Technology, May 1997, vol. 40, Issue 5.
“Fast and Long Retention-Time Nano-Crystal Memory,” H.I. Hanafi, S. Tiwari, I. Khan; IEEE Transactions on Electron Devices, vol. 43, No. 9, Sep. 1996.
“Charge-Trap Memory Device Fabricated by Oxidation of Si1-xGex,” Y-C King, T-J King, C. Hu; IEEE Transactions on Electron Devices, vol. 48, No. 4, Apr. 2001.
“A Long-Refresh Dynamic/Quasi-Nonvolatile Memory Device with 2-nm Tunneling Oxide,” Y-C King, T-J King, C. Hu; IEEE Electron Device Letters, vol. 20, No. 8, Aug. 1999.
“NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, D. Finzi; IEEE Electron Device Letters, vol. 21, No. 11, Nov. 2000.
“A Low Voltage SONOS Nonvolatile Semiconductor Memory Technology,” M.H. White, Y. Yang, A. Purwar, M.L. French; IEEE Transactions on Components, Packaging, and Manuf. Tech.-Part A, vol. 20, No. 2, Jun. 1997.
“High-Endurance Ultra-Thin Tunnel Oxide in MONOS Device Structure for Dynamic Memory Application,” H.C. Wann, C. Hu; IEEE Electron Device Letters, vol. 16, No. 11, Nov. 1995.
“Programming Characteristics of P-Channel Si Nano-Crystal Memory,” K. Han, I. Kim, H. Shin; IEEE Electron Device Letters, vol. 21, No. 6, Jun. 2000.
“A Novel, aerosol-nanocrystal floating-gate device for non-volatile memory applications,” J. DeBlauwe, M. Ostraat, M.L. Green, G. Weber, T. Sorsch, A Kerber, F. Klemens, et al.; 2000 IEEE.
“Single-Electron Devices and Their Applications,” K.K. Likharev; Proceedings of the IEEE, vol. 87, No. 4, Apr. 1999.
“Non-Volatile Si Quantum Memory with Self-Aligned Doubly-Stacked Dots,” R. Ohba, N. Sugiyama, K. Uchida, J. Koga, A. Toriumi; IEEE 2000.
“Modification of Indium Tin Oxide for Improved Hole Injection in Organic Light Emitting Diodes,” Y. Shen, D.B. Jacobs, G.G. Malliaras, G. Koley, M.G. Spencer, A. Ioannidis; Adv. Mater, 2001, No. 16, Aug. 16.
“Room Temperature Operation of a Quantum-Dot Flash Memory,” J.J. Welser, S. Tiwari, S. Rishton, K.Y. Lee, Y. Lee; IEEE Electron Device Letters, vol. 18, No. 6, Jun. 1997.
“Silicon Nano-Crystals Based MOS Memory and Effects of Traps on Charge Storage Characteristics,” Y. Shi, S.L. Bu, X.L. Yuan, Y.D. Zheng; K. Saito, H. Ishikuro, T. Hiramoto; IEEE 1998.
“A High Capacitive-Coupling Ratio (HiCR) Cell for 3 V-Only 64 Mbit and Future Flash Memories,” Y.S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, T. Okazawa, IEEE 1993.
“Volatile and Non-Volatile Memories in Silicon with Nano-Crystal Storage,” S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, D. Buchanan; 1995 IEEE.
“Multilevel FLash cells and their Trade-offs,” B. Eitan, R. Kazer-ounian, A. Roy; G. Crisenza, P. Cappelletti, A. Modelli; 1996 IEEE.
“Modeling and Design Study of Nanocrystal Memory Devices,” M. She, Y-C King, T-J King, C. Hu; Dept. of Elect. Eng. and Comp. Sciences, U. of C., Berkely, CA.
“A Four-State EEPROM Using Floating-Gate Memory Cells,” C. Bleiker, H. Melchior; IEEE Journal of Solid-State Circuits, vol. SC-22, No. 3, Jun. 1987.
“A Multilevel Approach Toward Quadrupling the Density of Flash Memory,” D.L. Kencke, R. Richart, S. Garg, S.K. Banerjee; IEEE Electron Device Letters, vol. 19, No. 3, Mar. 1998.
“Data Retention of a SONOS Type-Two-Bit Storage Flash Memory Cell,” W.J. Tsai, N.K. Zous, C.J. Liu, C.C. Liu, C.H. Chen, T. Wang, S. Pan, C-Y Lu; S.H. Gu; 2001 IEEE.
“A Novel Approach to Controlled Programming of Tunnel-Based Floating-Gate MOSFET's,” M. Lanzoni, L. Briozzo, B. Ricco; IEEE Jrnl. of Solid-State Circuits, vol. 29, No. 2, Feb. 1994.
“On the Universality of Inversion Layer Mobility in Si MOSFET's: Part I-Effects of Substrate Impurity Concentration,” S-i Takagi, A. Toriumi, M. Iwase, H. Tango; IEEE Transactions on Electron Devices, vol. 41, No. 12, Dec. 1994.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multibit metal nanocrystal memories and fabrication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multibit metal nanocrystal memories and fabrication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multibit metal nanocrystal memories and fabrication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3898511

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.