Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design
Reexamination Certificate
2006-04-11
2006-04-11
Siek, Vuthe (Department: 2825)
Computer-aided design and analysis of circuits and semiconductor
Nanotechnology related integrated circuit design
C716S030000, C716S030000
Reexamination Certificate
active
07028285
ABSTRACT:
Phase information is incorporated into a cell-based design methodology. Standard cells have four edges: top, bottom, left, and right. The top and bottom edges have fixed phase shifters placed, e.g. 0. A given cell C will have a phase set created with two versions: 0-180 (left-right) as well as 180-0. Alternatively, the same phase set: 0—0 and 180—180 could be created for a cell. The phase sets are selected based on the ability to phase shift the features within the cell C. By creating a phase set for most of the cells of a cell library, standard cell placement and routing techniques can be used and phase can then be quickly assigned using a simple ripple technique. This ensures a phase compliant design upfront for the standard cell areas. In some instances, phase sets are created for every cell in a library
REFERENCES:
patent: 4037918 (1977-07-01), Kato
patent: 5302477 (1994-04-01), Dao et al.
patent: 5308741 (1994-05-01), Kemp
patent: 5324600 (1994-06-01), Jinbo et al.
patent: 5364716 (1994-11-01), Nakagawa et al.
patent: 5441834 (1995-08-01), Takekuma et al.
patent: 5472814 (1995-12-01), Lin
patent: 5523186 (1996-06-01), Lin et al.
patent: 5527645 (1996-06-01), Pati et al.
patent: 5537648 (1996-07-01), Liebmann et al.
patent: 5538815 (1996-07-01), Oi et al.
patent: 5565286 (1996-10-01), Lin
patent: 5573890 (1996-11-01), Spence
patent: 5595843 (1997-01-01), Dao
patent: 5620816 (1997-04-01), Dao
patent: 5635316 (1997-06-01), Dao
patent: 5636131 (1997-06-01), Liebmann et al.
patent: 5686223 (1997-11-01), Cleeves
patent: 5702848 (1997-12-01), Spence
patent: 5761075 (1998-06-01), Oi et al.
patent: 5766804 (1998-06-01), Spence
patent: 5766806 (1998-06-01), Spence
patent: 5786112 (1998-07-01), Okamoto et al.
patent: 5807649 (1998-09-01), Liebmann et al.
patent: 5858580 (1999-01-01), Wang et al.
patent: 5923562 (1999-07-01), Liebmann et al.
patent: 5923566 (1999-07-01), Galan et al.
patent: 5994002 (1999-11-01), Matsuoka
patent: 5998068 (1999-12-01), Matsuoka
patent: 6057063 (2000-05-01), Liebmann et al.
patent: 6066180 (2000-05-01), Kim et al.
patent: 6083275 (2000-07-01), Heng et al.
patent: 6130012 (2000-10-01), May et al.
patent: 6139994 (2000-10-01), Broeke et al.
patent: 6185727 (2001-02-01), Liebmann
patent: 6228539 (2001-05-01), Wang et al.
patent: 6238824 (2001-05-01), Futrell et al.
patent: 6251549 (2001-06-01), Levenson
patent: 6258493 (2001-07-01), Wang et al.
patent: 6303251 (2001-10-01), Mukai et al.
patent: 6316163 (2001-11-01), Magoshi et al.
patent: 6335128 (2002-01-01), Cobb et al.
patent: 6338922 (2002-01-01), Liebmann et al.
patent: 6420074 (2002-07-01), Wang et al.
patent: 6436590 (2002-08-01), Wang et al.
patent: 6467076 (2002-10-01), Cobb
patent: 6470489 (2002-10-01), Chang et al.
patent: 6492073 (2002-12-01), Lin et al.
patent: 2001/0000240 (2001-04-01), Wang et al.
patent: 2001/0028985 (2001-10-01), Wang et al.
patent: 2002/0127479 (2002-09-01), Pierrat
patent: 2002/0129327 (2002-09-01), Pierrat et al.
patent: 2002/0152454 (2002-10-01), Cote et al.
patent: 2002/0155363 (2002-10-01), Cote et al.
patent: 195 45 163 (1996-06-01), None
patent: 0 653 679 (1995-05-01), None
patent: 2333613 (1999-07-01), None
patent: 62067547 (1987-03-01), None
patent: 2-140743 (1990-05-01), None
patent: 1283925 (1991-02-01), None
patent: 6-67403 (1994-03-01), None
patent: 8051068 (1996-02-01), None
patent: 8236317 (1996-09-01), None
patent: 2638561 (1997-04-01), None
patent: 2650962 (1997-05-01), None
patent: 10-133356 (1998-05-01), None
patent: 11-143085 (1999-05-01), None
patent: WO 98/12605 (1998-03-01), None
patent: WO 01 23961 (2001-04-01), None
patent: WO 0203140 (2002-01-01), None
Yamamoto et al.,“Hierarchical Processing of Levenson-Type Phase Shifter Generation”,Dec. 1997, Japanese Journal of Applie Physics, Part 1, No. 12B, vol. 36, pp. 7499-7503.
Heng et al.,“Application of Automated Design Migration to Alternating Phase Shift Mask (AltPSM) Design”, ISPD, Apr. 2001, presentation view graphs (19 pages).
Cooke, M., “OPC/PSM Designs For Poly Gate Layers”, European Semiconductor, vol. 22, No. 7, pp. 57-59, Jul. 2000.
Granik, Y., et al., “Sub-Resolution Process Windows And Yield Estimation Technique Based On Detailed Full-Chip CD Simulation”, SPIE, vol. 4182, pp. 335-341 (2000).
Plat, M., et al., “The Impact of Optical Enhancement Techniques on the Mask Error Enhancement Funchtion (MEEF)”, SPIE, vol. 4000, pp. 206-214, Mar. 1-3, 2000.
Mansuripur, M., et al., “Projection Photolithography”, Optics & Photonics News 11, 17 pages, Feb. 2000.
Ackmann, P., et al., “Phase Shifting and Optical Proximity Corrections to Improve CD Control on Logic Devices in Manufacturing for Sub 0 35 um I Line”, SPIF. vol. 3051 pp 146153 Mar. 12 14 1997.
Matsuoka, K., et al., “Application of Alternating Phase-Shifting Mask to 0.16um CMOS Logic Gate Patterns”, Matsushita Electric Ind Co., Ltd. (9 pages).
Wang, R., et al., “Plarized Phase Shift Mask: Concept, Design, and Potential Advantages to Photolithography Process and Physical Design”, Motorola Semiconductor Product Sector (12 pages).
Ogawa, K., et al., “Phase Defect Inspection by Differential Interference”, Lasertec Corporation (12 pages).
Pistor, I., “Rigorous 3D Simulation of Phase Defects in Alternating Phase-Shifting Masks”, Panoramic Technology Inc. ( pages).
Semmier, A., et al., “Application of 3D EMF Simulation for Development and Optimization of Alternating Phase Shifting Masks”, Infineon Technologies AG (12 pages).
Wong, A., et al., “Polarization Effects in Mask Transmission”, University of California Berkeley (8 pages).
Erdmann, A., “Topography Effects and Wave Aberrations in Advanced PSM-Technology”, Fraunhofer Institute of Integrated Circuits pages).
Granik, Y., et al., “CD Variation Analysis Technique and its Application to the Study of PSM Mask Misalignment”, Mentor, Graphics (9 pages).
Hanyu, et al., “New Phase-Shifting Mask with Highly Transparent SiO2 Phase Shifters”, Fujitsu Laboratories Ltd. (11 pages).
Ishiwata, N., et al., “Fabrication of Phase-Shifting Mask”, Fujitsu Limited (11 pages).
Levenson, M., et al., “Phase Phirst! An Improved Strong-PSM Paradigm”, M.D Levenson Consulting Petersen Advanced Lithography, KLA-Tencor (10 pages).
Levenson, M., et al., “SCAA Mask Exposures and Phase Phirst Design for 110nm and Below”, M.D. Levenson Consulting, Canon USA, Inc. JSR Microelectronics, Inc. (10 pages).
Lin, B.J. “The Relative Importance of the Building Blocks for 193nm Optical Lithography”, Linnovation, Inc. (12 pages).
McCallum, M., et al., “Alternating PSM Mask Performance a Study of Multiple Fabrication Technqiue Results”, International SEMATECH (6 pages).
Morikawa, Y., et al., “100nm-alt.PSM Structure Discussion for ArF Lithography”, Dai-Nippon Printing Co., Ltd. (15 pages).
Ozaki, T., et al., “A 0.15um KrF Lithography for 1Gb DRAM Product Using Highly Printable Patterns and Thin Resist Process”, Toshiba Corporation (2 pages).
Rhyins, P., et al., “Characterization of Quartz Etched PSM Masks for KrF Lithography at the 100nm Node”, Photronics, Inc., MIT Lincoln Lab, ARCH Chemicals, Finle Technologies, KLATencor Corp. (10 pages).
Rosenbluth, A., et al., “Optimum Mask and Source Patterns to Print a Given Shape”, IBM (17 pages).
Schmidt, R., et al., “Impact of Coma on CD Control for Multiphase PSM Designs”, AMD, ASML (10 pages).
Sewell, H., et al., “An Evaluation of the Dual Exposure Technique”, SVG Lithography Systems Inc. (11 pages).
Spence, C. et al., “Optimization of Phase-Shift Mask Designs Including Defocus Effects”, AMD. Princeton University, Veco Technologies Inc. (8 pages).
Suzuki, A., et al., “Multilevel Imaging System Realizing k1-Lithography”, Canon Inc. (13 pages).
Vandenberghe, G., et al., “(
Cote Michel L.
Pierrat Christophe
Bever Hoffman & Harms LLP
Harms Jeannette S.
Lin Sun James
Siek Vuthe
Synopsys Inc.
LandOfFree
Standard cell design incorporating phase information does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Standard cell design incorporating phase information, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Standard cell design incorporating phase information will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3599217