Semiconductor memory with floating gate type FET

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S317000, C257S319000, C257S320000, C257S321000

Reexamination Certificate

active

06815759

ABSTRACT:

This application is based on Japanese Patent Application No. HEI 11-345437 filed on Dec. 3, 1999, the entire contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
a) Field of the Invention
The present invention relates to a semiconductor memory realized basing upon a new operation principle. Dynamic random access memories (DRAMs) are known as typical semiconductor memories. One bit data is stored in one memory cell of DRAM which is constituted of one MISFET and one capacitor. DRAMs having ultra fine memory cells and a high capacity are under developments. Semiconductor memories capable of realizing a still larger capacity have been desired to date.
b) Description of the Related Art
A flash memory has drawn attention as semiconductor memories capable of realizing a larger capacity. The flash memory is suitable for realizing a larger capacity because one memory cell is constituted of only one MISFET.
Data is stored in a flash memory by injecting carriers into a floating gate electrode of a floating gate type FET. In order to retain carriers injected into the floating gate electrode, the thickness of an insulating film between the floating gate electrode and the channel region is set to more than 8 nm. Carriers are injected via this insulating film into the floating gate electrode by applying a high voltage across the channel region and floating gate electrode. As a high voltage is applied between them, carriers are injected into the floating gate electrode by the Fowler-Nordheim tunneling (FN tunneling) phenomenon.
A voltage of about 10 to 20 V is required in order to inject carriers into the floating gate electrode by the FN tunneling phenomenon. It is therefore difficult to lower the voltage and reduce a power consumption.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a semiconductor memory capable of realizing a large capacity and a low voltage.
According to one aspect of the present invention, there is provided a semiconductor memory comprising: a semiconductor substrate; a tunneling insulating film formed on a partial surface area of said semiconductor substrate, said tunneling insulating film having a thinness enough to transmit carriers therethrough by a tunneling phenomenon; a floating gate electrode formed on said tunneling insulating film; a gate insulating film covering a side wall of said floating gate electrode and a partial surface area of said semiconductor substrate on both sides of said floating gate electrode, said gate insulating film having a thickness not allowing carriers to transmit therethrough by the tunneling phenomenon; a first control gate electrode disposed on said gate insulating film over the side wall of said floating gate electrode and over a partial surface area of said semiconductor substrate on both sides of said floating gate electrode; and a pair of impurity doped regions formed in a surface layer of said semiconductor substrate on both sides of a gate structure including said floating gate electrode and said first control gate electrode.
As a voltage is applied between the control gate electrode and impurity doped regions, carriers in the channel region tunnel through the tunneling insulating film and are injected into the floating gate electrode. Injected carriers change the threshold voltage so that data can be read. Carriers injected into the floating gate electrode do not tunnel through the gate insulating film.
According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor memory, comprising the steps of: forming a tunneling insulating film on a surface of a semiconductor substrate, the tunneling film having a thinness enough to transmit carriers therethrough by a tunneling phenomenon; forming a first conductive film on the tunneling insulating film, the first conductive film being made of conductive material or semiconductor material; forming a dielectric film on the first conductive film, the dielectric film having a thickness not allowing carriers to transmit therethrough by the tunneling phenomenon; forming a second conductive film on the dielectric film, the second conductive film being made of conductive material or semiconductor material; patterning a lamination structure from an upper surface of the second conductive film to at least a lower surface of the first conductive film to leave a laminated mesa including the first conductive film, the dielectric film and the second conductive film; forming a gate insulating film covering upper and side surfaces of the laminated mesa and a partial surface of the semiconductor substrate on both sides of the laminated mesa, the gate insulating film having a thickness not allowing carriers to transmit therethrough by the tunneling phenomenon; forming a third conductive film covering a whole surface of the gate insulating film, the third conductive film being made of conductive material or semiconductor material; anisotropically etching the third conductive film to leave a side control gate electrode made of the third conductive film over a side wall of the laminated mesa; doping impurities in a surface layer of the semiconductor substrate on both sides of a gate structure including the laminated mesa and the side control gate electrode to form impurity doped regions; and electrically connecting the side control gate electrode to the second conductive film constituting the laminated mesa.
The first conductive film constituting the laminated mesa operates as the floating gate electrode. The side control gate can be formed in a self-alignment manner relative to the floating gate electrode.
According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor memory, comprising the steps of: forming an element separation insulating film on a surface of a semiconductor substrate to define an active region surrounded with the element separation insulating film; forming a tunneling insulating film on the active region, the tunneling insulating film having a thinness enough to transmit carriers therethrough by a tunneling phenomenon; forming a first conductive member on the tunneling insulating film, the first conductive film traversing the active region and made of conductive material or semiconductor material; forming a gate insulating film on upper and side surfaces of the first conductive member and on a partial area of the active region on both sides of the first conductive member, the gate insulating film having a thickness not allowing carriers to transmit therethrough by the tunneling phenomenon; covering a surface of the gate insulating film with a conductive film made of conductive material or semiconductor material; anisotropically etching the conductive film to leave a side control gate electrode made of the conductive film over a side wall of the first conductive member; and doping impurities in a surface layer of the active region on both sides of a gate structure including the first conductive member and the side control gate electrode.
The first conductive film functions as the floating gate electrode. The side control gate can be formed in a self-alignment manner relative to the floating gate electrode.
According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor memory, comprising the steps of: forming an element separation insulating film on a surface of a semiconductor substrate to define an active region surrounded with the element separation insulating film; forming a first film over the whole surface of the semiconductor substrate; forming an opening through the first film, the opening traversing the active region; forming a gate insulating film on a surface of the active region exposed on a bottom of the opening, the gate insulating film having a thickness not allowing carriers to transmit therethrough by tunneling phenomena; forming a second film on bottom and side surfaces of the opening and on an upper surface of the first film, the second film being made of conduc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor memory with floating gate type FET does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor memory with floating gate type FET, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor memory with floating gate type FET will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3336850

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.