Magnetron sputter source with multipart target

Chemistry: electrical and wave energy – Processes and products – Coating – forming or etching by sputtering

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S298160, C204S298080, C204S298200, C204S298280

Reexamination Certificate

active

06692618

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a magnetron sputter source as well as a device for such.
Magnetron sputter sources are employed in vacuum coating devices for coating substrates in varied ways. As is well known by a person with ordinary skill in the art, that such a magnetron sputter source essentially comprises a target to be sputtered off and a magnet system, disposed behind it, which concentrates a plasma generated during operation in the proximity of the target surface in the form of a closed plasma tube, in order to intensify the sputtering of the material from the target.
A multiplicity of configurations and special adaptations have been developed in order to do justice to the broad spectrum of applications for this type of equipment. One of these areas is called cosputtering, in which several targets of differing materials are employed or a single target which is not comprised of a block of a single material or a material mixture, but rather is composed of differing elements in differing geometries (multipart or segmented target). With these types of targets, for example, layer sequences of different materials can be obtained, but, in addition, the capability is also given of affecting the composition of the layer to be applied during the sputtering process.
It is known that by using movable magnet systems in magnetron sputter sources, target utilization and layer thickness distribution can be affected generally.
Within the prior art several magnetron sputter sources and cosputter methods are known.
For example, the disposition of several simultaneously operated sputter sources opposite the substrate has been disclosed. By rotating the same, a layer-by-layer covering or an alloy coating becomes possible.
U.S. Pat. No. 4,505,798 describes the fundamental principle of a multipart target for differing target geometries (round, oblong, cylindrical). In particular, reference is made to the capability of determining the alloying rate of the layer to be sputtered on via the area ratio of the target segments.
U.S. Pat. No. 5,512,150 shows a configuration of concentric target rings above magnet systems to be definitively assigned in each instance to the target sections. The substrate, onto which the layers are applied, thereby appears to the target sections at different angles.
U.S. Pat. No. 6,143,149 describes a sputter device with multipart target in which each target segment is electrically insulated from the others and is individually connectable to a power supply. This target is provided with shielding sheets, which is intended to prevent the undesirable sputtering off of adjacent segments or their covering with impurity material.
All described cosputtering methods and devices with multipart targets have one disadvantage in common, which is that they insufficiently take into account the differing sputtering behavior of the materials. At constant sputter power certain regions of a multipart target are ablated more strongly than others. This impairs the service life of the target and the material yields. Attempts to compensate this through target profiling or different target thicknesses increase the expenditure in the target production. Furthermore, the configurations which allow influencing the layer composition during the sputtering process, could so far only be realized with large technical expenditures.
SUMMARY OF THE INVENTION
It is therefore the task of the present invention to eliminate the disadvantages of prior art and by employing the characteristics according to the invention to provide a sputter source, which has a simplified structure compared to prior known sputter sources, has increased economy and, moreover, permits variation of the alloy composition. In addition, high covering homogeneity of the substrate is to be ensured. The mechanical compatibility with known sputter systems with single-part, non-segmented targets is also possible.
The task is solved according to main features of the invention and further advantageous implementations according to the invention.
The operation of a magnetron sputter source with a multipart target, a movable magnet system and at least one power supply for plasma generation is distinguished thereby that power delivery of the at least one power supply is varied during operation.
If variation of the power delivery is synchronized, preferably synchronized under control and in particular periodically, with the movement of the magnet system, the coincidence of the pulverization region affected by the magnet system selectively with certain areas of the multipart target can be attained. It is thereby achieved that a certain power delivery of the power supply in each case acts upon a certain, preferably the same, segment of the target portion.
In a further preferred embodiment the variation of the power delivery for a power supply can be preset. In particular, the control, such as a computer control, permits the regulation according to presettable values.
Moreover, in a further embodiment at least one sensor is employed in the magnet system, which determines its position, for example with rotating systems the current position angle with respect to a reference point, and permits the synchronization of the power delivery of the power supply with the position of the magnet system.
The method according to the invention is preferably applied in configurations with round sources, with the magnet system rotating behind the target configuration. The target configuration is herein formed from the provided differing materials in multiple parts, at least in two parts, in particular with a round target configuration in segments. The substrate is disposed in front of the target at the conventional distance of a few cm, parallel or inclined to the target, and for homogenation of the layer application is preferably moved, in particular rotated. By utilizing the power variation according to the invention corresponding measures become possible for a person skilled in the art in order to obtain further effects. Thus, layer properties, which are a function of the covering rate per time (for example multiple layer), can be affected. Gradual changes of the composition can be attained by varying the power conditions during the sputtering off of differing target portions over the coating time period.
A magnetron sputter source according to the invention for coating substrates comprises a multipart target, a movable magnet system with driving for the affecting of the pulverization regions on the target and at least one power supply, as well as means for modulating the power delivery and further means for synchronization with the drive of the magnet system.
These means for modulating the power delivery can be realized with controls which permit setting, modulating or switching different power levels of one or several power supplies. Furthermore, through a control electronic circuitry a dynamic shape or a pulsing of the output power of one power supply can be realized. Embodiments as a separate control circuit of a DC or RF power supply or as a programmable power supply among other feasibilities are familiar to a person skilled in the art.
In a special embodiment the multipart target is structured circularly. This embodiment is of advantage for many applications in the semiconductor industry (wafer) or the production of storage media (CD, DVD, hard disks). In a further preferred embodiment the substrate is disposed such that it is movable, preferably rotatable about an axis substantially normal with respect to the substrate plane. Thereby the homogeneity of the layer application is improved. In particular, if, as in a further preferred embodiment, the movability of the magnet system is a rotatability about an axis substantially normal with respect to the target plane. Compared to other conceivable embodiments, this has the advantage that the magnet system remains equidistant from the target plane. Further advantages are attained through a motor drive of substrate and magnet system, preferably indep

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetron sputter source with multipart target does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetron sputter source with multipart target, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetron sputter source with multipart target will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3324475

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.