Voltage island design planning

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C716S030000, C716S030000

Reexamination Certificate

active

06779163

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to integrated circuits and more particularly to an improved integrated circuit design and method which utilizes voltage islands that operate at independent voltages and can be selectively gated to reduce power consumption.
2. Description of the Related Art
As technology scales for increased circuit density and performance, the need to reduce power consumption increases in significance as designers strive to utilize the advancing silicon capabilities. The consumer product market further drives the need to minimize chip power consumption.
The total power consumed by conventional CMOS circuitry is composed of two primary sources. The first is active power consumed by circuits as they switch states and either charge or discharge the capacitance associated with the switching nodes. Active power represents the power consumed by the intended work of the circuit to switch signal states and thus execute logic functions. This power is not present if the circuit in question is not actively switching. Active power is proportional to the capacitance that is switched, the frequency of operation, and to the square of the power supply voltage. Due to technology scaling, the capacitance per unit area increases with each process generation. The power increase represented by this capacitance increase is offset by the scaling of the power supply voltage, Vdd.
The frequency of operation, however, increases with each generation, leading to an overall increase in active power density from technology generation to technology generation. This increasing power density in turn drives the need for more expensive packaging, complex cooling solutions and decreased reliability due to increased temperatures.
In addition to active power, there are components of leakage power, the most dominant of which is the sub-threshold current of the transistors in the circuit. As silicon technologies advance, smaller geometries become possible, enabling improvements of device structures including lower transistor oxide thickness (Tox), which in turn increases transistor performance. To maintain circuit reliability, Vdd must be lowered as Tox is reduced. As Vdd is reduced, the transistor threshold voltage (Vt) must be reduced in order to maintain or improve circuit performance, despite the drop in Vdd. This decrease in Vt and Tox then drives significant increases in leakage power, which has previously been negligible. As silicon technologies move forward, leakage currents become as important as active power in many applications. Therefore, there is a need for a method and structure that increases performance, while at the same time decreases power consumption. The invention described below satisfies these needs.
BRIEF SUMMARY OF THE INVENTION
In order to attain the object suggested above, there is provided, according to one aspect of the invention a method of designing an integrated circuit chip. The method supplies a chip design, partitions elements of the chip design according to similarities in voltage requirements and timing of power states of the elements to create voltage islands, creates a floorplan of the voltage islands, assesses the floorplan, repeats the partitioning and the creating of the floorplan depending upon a result of the assessing process, and outputs a voltage island specification list. The elements are logical partitions of the chip design.
The partitioning assesses waveforms of the elements to identify the timing of periods when the elements can be disconnected from a power supply and identifies allowable voltage ranges for each of the elements. The elements comply with timing requirements when operated within the allowable voltage ranges. The partitioning further groups the elements according to similarities of local voltage ranges and evaluates average chip power consumption and chip timing at different voltage combinations for each of the elements. The voltage combinations are selected to be within the voltage ranges of each element. The partitioning further selects from the different voltage combinations that have a chip timing that falls within timing requirements of the chip design and that have the smallest average chip power consumption.
The invention also provides a method of designing an integrated circuit chip supplies a chip design that has logical partitions. The invention groups the logical partitions according to similarities in voltage requirements and timing of power states of the logical partitions to create voltage islands. The invention optimizes the voltage islands by assigning logical partitions and assigning power sources to the voltage islands that minimize power consumption across the integrated circuit chip. The invention outputs a voltage island specification list that has a power source name, a power source type, minimum voltage level, maximum voltage level, nominal voltage level, switching signal name, switching signal type, power on hours, and/or steady state on percentage.


REFERENCES:
patent: 6083271 (2000-07-01), Morgan
patent: 2003/0079192 (2003-04-01), Cheong et al.
patent: 2003/0084416 (2003-05-01), Dai et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Voltage island design planning does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Voltage island design planning, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Voltage island design planning will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3294358

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.