Piezoelectric/electrostrictive film type elements and...

Semiconductor device manufacturing: process – Making device or circuit responsive to nonelectrical signal – Physical stress responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S003000, C438S243000, C438S250000, C438S253000, C310S358000, C029S025000

Reexamination Certificate

active

06703257

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to piezoelectric/electrostrictive film type elements of a unimorph type or a bimorph to be used as various transducers and actuators, etc. In particular, the invention is aimed at advantageously improving durability of such piezoelectric/electrostrictive film type elements without deteriorating their piezoelectric/electrostrictive performance by controlling a heterophase-occurrence rate at a surface of a piezoelectric/electrostrictive layer.
The piezoelectric/electrostrictive film type elements according to the present invention are intended to include elements for converting electric energies to mechanical energies, i.e., mechanical displacements, stress or vibration as well as elements for effecting reverse conversions thereof. Since the elements according to the present invention have a dielectric property as well as the piezoelectric/electrostrictive performance, they can be also used as filmy condenser elements, etc.
(2) Related Art Statement
The piezoelectric/electrostrictive elements are used in a wide variety of fields including the following: various transducers for converting electric energies to mechanical energies, i.e., mechanical displacements, forces or vibration, as well as elements for effecting reverse conversions thereof, various actuators; functional parts operating at a predetermined frequency range such as filters; various display devices such as displays; sound-emitting members such as loudspeakers; sensors such as microphones; and ultrasonic wave sensors, etc.
For example, FIG.
1
(
a
) illustrates a known piezoelectric/electrostrictive element which includes a ceramic substrate
1
functioning as a vibrating plate and a film-type piezoelectric/electrostrictive operating section
5
provided on the substrate
1
. The piezoelectric/electrostrictive operating section is constituted by a lower, first electrode film
2
, a piezoelectric/electrostrictive layer
3
and an upper, second electrode film
4
, as discussed in JP-A-3-128,681. In addition, there is also known a piezoelectric/electrostrictive element, which is shown in FIG.
1
(
b
), in which a ceramic substrate
1
is provided with a cavity having a bottom portion used as a vibrating section
1
a
. A piezoelectric/electrostrictive operating section
5
is integrally formed on the outer surface of the vibrating section
1
a
as discussed in JP-A-5-49,270.
As ceramic substrates constituting such piezoelectric/electrostrictive elements, ceramic materials composed mainly of zirconium oxide partially stabilized with yttrium oxide are generally known (for example, JP-A 5-29,675, JP-A-5-97,437 and JP-A-5-270,912).
Environments in which piezoelectric/electrostrictive devices are used have recently and variously changed with diversification in the use of piezoelectric/electrostrictive devices. Particularly, when the use environment in which the above-mentioned piezoelectric/electrostrictive film type elements are used is of a higher temperature and more humid atmosphere compared with conventional conditions, deterioration in a material used for the substrate poses a problem.
That is, if the piezoelectric/electrostrictive film element is used in the above higher temperature and more humid environment, there is a tendency that the substrate begins to be degraded in the piezoelectric/electrostrictive film type element.
SUMMARY OF THE INVENTION
The present invention has been developed in view of the above actual circumstances, and is aimed at the provision of integrated piezoelectric/electrostrictive film type elements having excellent durability and an advantageous producing process thereof, without causing degradation in material of the substrate or lowering the piezoelectric/electrostrictive performance or deteriorating the characteristics of the piezoelectric/electrostrictive layer, even if used under the high-temperature and highly humid atmosphere.
In the following, the elucidation process of the present invention will be explained.
After having repeatedly performed strenuous investigations to accomplish the above object, the present inventors discovered that the substrate was deteriorated by a lead element entering into the substrate during the production process. That is, although a ceramic material composed mainly of zirconium oxide has been formerly used as the substrate, it was clarified that the lead element entering into such a ceramic substrate rapidly damaged the durability of the substrate when used in the high-temperature and highly humid condition.
Therefore, the present inventor then examined causes why the lead element entered into the substrate, and discovered that such a lead element entered the substrate when firing (thermally treating) the piezoelectric/electrostrictive material. That is, a lead-containing materials having excellent properties (such as lead zirconate titanate, etc.) was generally used as the piezoelectric/electrostrictive material, and a film of such a material was ordinarily formed as a piezoelectric/electrostrictive layer, and integrated by firing.
When a piezoelectric/electrostrictive layer made of such a lead-containing material is to be formed (by firing), the atmosphere is controlled under a condition with a high lead concentration to prevent the evaporation of the lead element contained in the piezoelectric/electrostrictive material during firing, since such evaporation may cause changes in the composition of the piezoelectric/electrostrictive layer to thereby deteriorate the piezoelectric/electrostrictive performance.
As mentioned above, the piezoelectric/electrostrictive layer is fired with a lead concentration-increased atmosphere in the presence of an evaporating source of a lead-containing material or the like so as to prevent the deterioration in the above characteristics. However, when the piezoelectric/electrostrictive layer is fired in the atmosphere with such a high lead concentration, the lead element in the atmosphere penetrates into the ceramic substrate composed mainly of zirconium oxide, which causes deterioration in the quality of the substrate as mentioned before.
In order to solve the above problems, the present inventors repeatedly performed numerous experiments and examinations, and acquired the following knowledge:
(1) The firing atmosphere need not always be an atmosphere having a high concentration of lead, even if the piezoelectric/electrostrictive layer contains the lead element. If some lead element evaporates from the piezoelectric/electrostrictive layer during firing, no deterioration occurs in the piezoelectric/electrostrictive layer;
(2) The rate of a heterophase occurring at a surface of the piezoelectric/electrostrictive layer during firing is preferable as an index for the judgment of the evaporated amount of the lead element from the piezoelectric/electrostrictive layer; and
(3) The integrated piezoelectric/electrostrictive film type element in which the area rate of the heterophase occurring during firing is controlled to within a range of 0.1 to 30% by adjusting the firing conditions suffers from neither degradation in quality in the substrate and deterioration in the characteristics of the piezoelectric/electrostrictive layer even when in use under a high-temperature and highly humid atmosphere.
The present invention is based on the above recognition. That is, the substantial features of the present invention are as follows.
An integrated piezoelectric/electrostrictive film type element having excellent durability includes a substrate made of a ceramic material composed mainly of completely stabilized or partially stabilized zirconium oxide, and a piezoelectric/electrostrictive operating section integrated onto the ceramic substrate using a film-forming method. The piezoelectric/electrostrictive operating section includes a lower electrode, a piezoelectric/electrostrictive layer of a lead element-containing composition, and an upper electrode. A heterophase-occurrence rate at a surface of the piezoelectric/electrostrictive layer is controlled t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Piezoelectric/electrostrictive film type elements and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Piezoelectric/electrostrictive film type elements and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Piezoelectric/electrostrictive film type elements and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3281507

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.