Integrated circuit with layout matched high speed lines

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C716S030000, C716S030000, C326S041000, C326S047000, C326S101000, C326S102000, C327S564000, C327S565000, C327S566000

Reexamination Certificate

active

06810512

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The invention relates to integrated circuits, and more particularly, to circuits with high speed interconnect lines.
BACKGROUND OF THE INVENTION
As the operating frequencies on modern integrated circuits have become increasingly higher, signal propagation timing constraints have become increasingly stricter. This is particularly the case for synchronous integrated circuits, where signals are expected at interfaces and inputs at specific times. A major source of signal propagation delay in modern integrated circuits is delay from resistive and capacitive loading. This potential for signal propagation delay due to RC loading has become even more of a predominant issue with the decreasing device sizes, spacing, and operating voltages of modern components.
The primary object of most common types of modern integrated circuit construction techniques is to increase operating speed and frequencies of integrated circuit device components by reducing device component sizes and operating voltages. While accomplishing this goal, however, the reduced device sizes decrease interconnect line cross section area, which has the effect of increasing the individual line resistances. The same reduction in feature size reduces the line-to-line spacing, increasing the interconnect line capacitance due to line-to-line capacitance effects. Both these effects adversely influence the RC loading of the interconnect lines in integrated circuits. This increased RC loading interferes with signal propagation speed and increase the likelihood of timing faults when the circuit is in operation.
Line resistance and line-to-line capacitance is particularly an issue in high speed lines that have longer run lengths or drive external buffers. Relatively long run lines typically have high RC time constants because of increased individual line resistance and capacitance, due to line length, line-to-line spacing, and bulk silicon effects. The increased line capacitance and resistance of such long run lines typically require the use of increased line voltage to counteract the increased RC time constant they engender and increase timing constraints.
For the reasons stated above, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for a system to reduce line-to-line capacitive effects and increased RC time constants in integrated circuits with reduced feature size. Additionally, there is a need for the ability to reduce interconnect line capacitance, and to have matched delays and RC time constants across grouped long run lines.
SUMMARY OF THE INVENTION
The above-mentioned problems with integrated circuit interconnect resistive and capacitive loading, and other problems, are addressed by the present invention and will be understood by reading and studying the following specification.
In one embodiment, an integrated circuit comprises a set of interconnect lines of differing lengths implemented in close physical proximity, and running generally in parallel to each other, wherein the set of interconnect lines comprise, a subset of interconnect lines with a longer parallel run length than average for the set, and a subset of interconnect lines with a shorter parallel run length than average for the set, wherein each member of the subset of shorter run length interconnect lines is routed in between two members of the subset of longer run length interconnect lines, such that a space in between two members of the subset of longer run length interconnect lines left open when the short run line reaches the end of its parallel run length.
In another embodiment, an integrated circuit comprises an active circuit, a set of distributed circuits, and a set of conductors of differing lengths implemented in close physical proximity and running generally in parallel to each other, wherein each member of the set of distributed circuits is coupled to at least one member of the set of distributed circuits, and wherein the set of conductors comprises, a subset of generally longer than average conductors, and a subset of generally shorter than average conductors, such that in a plan view each member of the subset of shorter conductors is routed beside a member of the subset of longer conductors wherein a space occupied by the shorter conductor is not filled by another conductor or component when the shorter conductor reaches the end of its generally parallel run length, providing increased lateral separation.
In a further embodiment, a memory device comprises an address interface coupled to a first I/O buffer circuit, a first interconnect circuit coupled to the first I/O buffer circuit and to an address register, a data interface coupled to a second I/O buffer circuit, a second interconnect circuit coupled to the second I/O buffer circuit, a control interface coupled to a third I/O buffer circuit, and a third interconnect circuit coupled to the third I/O buffer circuit, wherein the first, second and third interconnect circuits each comprise a set of interconnect lines of differing lengths, implemented in close physical proximity, and running generally in parallel to each other, a subset of generally longer than average interconnect lines, and a subset of generally shorter than average interconnect lines, such that, in a plan view, each member of the subset of shorter interconnect lines is routed beside a member of the subset of longer interconnect lines such that a space occupied by the shorter interconnect line is not filled by another interconnect line or component when the shorter interconnect line reaches the end of its generally parallel run length, providing increased lateral separation.
In yet another embodiment, an integrated circuit comprises an active circuit, a set of distributed circuits, and a set of conductors of differing lengths implemented in close physical proximity and running generally in parallel to each other, and each conductor having a line resistance, R
L
, a first capacitance, C
B
, due to a bulk substrate capacitance, and a second capacitance, C
L
, due to conductor to conductor capacitance effects, such that each conductor has a RC time constant of R
L
(C
B
+C
L
), and wherein each member of the set of conductors is coupled to the active circuit and to at least one member of the set of distributed circuits, such that the set of conductors comprises a subset of generally longer than average conductors, and a subset of generally shorter than average conductors, wherein an average RC time constant of the set of conductors is reduced by routing each member of the subset of shorter conductors beside a member of the subset of longer conductors, such that a space occupied by the shorter conductor is not filled by another conductor or component when the shorter conductor reaches the end of its generally parallel run length to reducing the second capacitance, C
L
, due to conductor to conductor capacitance effects.
A method of adjusting an integrated circuit for a reduced conductor capacitance comprises routing a first subset of generally longer conductors of a set of generally parallel and physically proximate conductors, and selectively routing a second subset of generally shorter conductors of the set of generally parallel and physically proximate conductors to reduce conductor to conductor capacitance, such that in a plan view each member of the second subset of generally shorter conductors is routed beside a member of the first subset of longer conductors such that a space occupied by the shorter conductor is not filled by another conductor or component when the shorter conductor reaches the end of its generally parallel run length, providing increased lateral separation.
Another method of adjusting an integrated circuit for a reduced interconnect line RC time constant comprises routing a first subset of generally longer interconnect lines of a set of generally parallel and physically proximate interconnect lines, selectively routing a second subset of general

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated circuit with layout matched high speed lines does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated circuit with layout matched high speed lines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated circuit with layout matched high speed lines will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3264343

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.