Switch-on-the-fly GBIC disk channel adapter and disk channel...

Electrical computers and digital data processing systems: input/ – Input/output data processing – Peripheral adapting

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S002000, C710S062000, C710S072000

Reexamination Certificate

active

06763409

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a general purpose interface to a Fibre Channel array controller, more particularly to a gigabit interface converter (GBIC) or a gigabit link module (GLM) channel adapter, and to the use of a channel controller with associated general GBIC/GLM adapters to provide an ultra-high bandwidth bus.
BACKGROUND
Enterprise resource planning systems and other sophisticated corporate data processing systems have gained substantial importance in recent years. Specifically, many corporate management theories posit that the success of an organization is directly related to the ability to gather and process enterprise information in an efficient and organized manner. To fulfill these goals, certain software companies have produced information management products such as RP/3 and the like. These types of software systems manage enormous amounts of information. Management of inventory levels, customer purchasing information, accounting data, employment information, and various other databases requires significant storage capacity. In addition, e-commerce has placed a premium upon transferring ordinary business operations to electronic work flows, thereby creating further storage capacity requirements. In addition, increased processing speed and capacity places greater demands upon storage resources.
Disk arrays have been designed to address these storage requirements. An exemplary disk array system is described in commonly assigned U.S. Pat. No. 5,392,244, entitled “MEMORY SYSTEMS WITH DATA STORAGE REDUNDANCY MANAGEMENT,” the disclosure of which is incorporated herein by reference. In essence, a disk array is a system that utilizes a number of discrete disks and interfaces with a host system or systems in such a manner that the assemblage of discrete disks appears as a single disk system. Disk arrays present numerous advantages. For example, disk arrays are highly redundant. If a particular discrete disk fails, the remaining portion of the disk array remains in operation. Moreover, disk arrays permit data mirroring, i.e. the same data may be stored upon more than one disk to provide greater redundancy against discrete disk failure. Accordingly, the probability of failure of the entire disk array is much lower than integrated storage systems.
Moreover, known disk array systems are designed to operate in a Fibre Channel environment. The Fibre Channel communication protocols are somewhat similar to the well-known Small Computer System Interface (SCSI) scheme, except for several differences. SCSI is a parallel interface standard used by various personal computers for attaching peripheral devices to computers. The Fibre Channel approach utilizes a mapped protocol to communicate frames, instead of individual bytes. Moreover, the Fibre Channel approach does not utilize parallel communication path connections. Instead, the Fibre Channel environments utilize serial communication channels to provide various system architectures, such as point-to-point, arbitrated loop, and crosspoint switched topologies. The serial communication approach simplifies system configuration. Specifically, the in-bound cable for one device in a Fibre Channel environment is the out-bound cable for a preceding device (either another independent unit or a fabric circuit switch). The fiber may comprise either an optical fiber cable or a twin-axial copper cable. For the remaining material, the term “fiber” shall be interchangeably utilized to mean either a fiber optical medium or a twin-axial copper cable. Also, it should be noted that Fibre Channel systems provide very high data communication rates. In fact, gigabit communication rates are possible. Fibre Channel systems rely upon intermediate devices to propagate information accurately between source and destination devices. Since the Fibre Channel architecture utilizes this approach, Fibre Channel systems limit the number of devices that may be present upon the system. This limitation is imposed to reduce latency and improve data communication rates.
Since there is an inherent limitation upon the number of devices present upon a Fibre Channel system, disk arrays operating upon a Fibre Channel system do not connect each individual disk unit to the external Fibre Channel system. Instead, a Fibre Channel disk array integrates the Fibre Channel in-bound and out-bound cables in a backplane. The Fibre Channel disk arrays further comprise a controller unit to arbitrate or manage communication between the discrete disk units and the Fibre Channel environment. The operating principles of an array controller is described in commonly assigned U.S. Pat. No. 5,471,640, entitled “PROGRAMMABLE DISK ARRAY CONTROLLER HAVING N COUNTERS FOR N DISK DRIVES FOR STRIPPING DATA WHERE EACH COUNTER ADDRESSES SPECIFIC MEMORY LOCATION BY A COUNT OF N,” the disclosure of which is incorporated herein by reference. The controller unit may provide a predetermined number of disk bays for connecting individual disk units. Thereby, the discrete disk units communicate directly with the controller unit. The controller unit assembles information received via the disk bays from the drives for communication in the forward direction over the fiber channel. Similarly, the controller unit separates data communicated in the reverse direction for distribution to the particular discrete drive units via appropriate disk bays. The controller unit further manages the discrete disk units in a manner that the plurality of units appears as a single disk. The controller unit implements mirroring tasks to provide for greater redundancy. Also, the use of Fibre Channel protocols permits efficient communication of data from discrete disk units to destination devices on the Fibre Channel system. Specifically, Fibre Channel protocols have demonstrated high bandwidth capability for large file transfers.
This architecture is quite useful to provide large storage capacity in an efficient and reliable fashion. However, the architecture of such disk array systems is specifically designed for a single purpose-data storage upon multiple discrete disk units. Moreover, the architecture provides very limited scalability. Specifically, the architecture limits the addition of discrete disk units to a predetermined number. At the present time, additional storage requirements must be fulfilled by providing a separate disk array system which obviously entails substantial expense. Also, the controller unit is singularly designed to interface with discrete disk units via the disk bays. Since the controller unit utilizes a specific interconnect, it is not possible to connect other devices via the disk bays.
SUMMARY OF THE INVENTION
The present invention provides an interface to facilitate a scalable and cost-effective disk array system. By doing so, the present invention simplifies operating system compatibility issues by facilitating scalable data storage. The present invention provides a general purpose interface to permit connection of heterogeneous devices to a Fibre Channel controller via plug-in connections. Also, the present invention facilitates connection of a plurality of heterogenous devices to a Fibre Channel system via a controller in a manner that the plurality of devices appears from a system perspective as a single device. Moreover, the present invention provides a general interface to a Fibre Channel controller to provide an ultra-high speed bus.
The present invention is directed to a general purpose interface to a Fibre Channel controller. The system provides a dual or greater slot interface to a single bay of a fiber channel system. The interface may preferably comprise two slots utilizing either a gigabit interface converter (GBIC) or a gigabit link module (GLM) for both slots. By providing a plurality of slots, the present invention permits scalable addition of devices to the Fibre Channel controller. The interface does not simply double the interface capacity of the Fibre Channel controller. Instead, individual interfaces may be serially connected. Thus, the interfaces permit exponent

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Switch-on-the-fly GBIC disk channel adapter and disk channel... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Switch-on-the-fly GBIC disk channel adapter and disk channel..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Switch-on-the-fly GBIC disk channel adapter and disk channel... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3209930

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.