Process and device for the screening of molecules with...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S030000, C435S034000, C435S286100, C435S287100, C435S287300, C435S288500, C435S808000, C435S888000, C422S082080, C422S082050, C356S036000, C356S038000, C356S337000, C356S338000, C356S341000, C356S343000

Reexamination Certificate

active

06713264

ABSTRACT:

The invention relates to a process and a device for an optimised selection of molecules from molecule libraries with regard to their binding behaviour towards one or more given target molecules, which for the first time allows a very great variety of molecules to be investigated, provides information on individual binding events and allows a sparing selection of the molecules being selected.
The molecule libraries forming the basis for the selection process according to the invention are generated by chemical methods (combinatorial chemistry) or by biotechnological methods within the field of Applied Molecular Evolution (AME). In this connection combinatorial chemistry utilises all manner of chemical reactions for the construction of molecule libraries, whereas AME produces a large population of different biopolymers by means of mutation strategies. The efficient selection of molecules or biopolymers binding to a specific target is a substantial element in the discovery of new pharmaceutical active ingredients (pilot structures) and therefore of great importance.
In principle, processes within the field of AME for protein design are known and established. The evolutive strategy was applied, for example, in the discovery of peptide ligands (O'Nell et al., Prot. 14, 509 (1992) and in the development of customised high-affinity antibodies (Breitling et al., Gene 104, 147 (1991), Clackson et al., Nature 352, 624 (1991), Marks et al., J. Mol. Biol. 222, 581 (1991), Persson, Proc. Natl. Acad. Sci. USA 88, 2432 (1991)). Antibody-engineering in particular is a promising concept of applied evolutive biotechnology. Owing to their highly selective binding properties, antibodies are important reagents in research, diagnostics and therapy (Plückthun, J. Anal. Chem. 337, 13 (1990), Plückthun, Biotechnology 9, 545 (1991), Little et al., Biotech. Adv. Vol. 12, 539 (1994)). Apart from the formation of molecule libraries by AME, the use primarily of combinatorial chemistry has recently become established. This exploits a variety of chemical reactions for the synthesis of the library on solid supports such as, for example, polymer beads (D. J. Ecker, S. T. Crooke, Biotechnology, 1995, 13, 351; R. M. J. Liskamp, Angew. Chemie, 1994, 106, 661; T. Carell, E. A. Winter, A. Bashir-Hashemi, J. Rebek, Angew. Chemie, 1994, 106, 2159; J. W. Metzger, K. -H. Wiesmüller, V. Gnau, J. Brünjes, G. Jung, Angew. Chemie, 1993, 105, 901). An example which may be mentioned here is the solid-phase synthesis of benzodiaze-pines by Hobbs, De Witt et al. (Proc. Natl. Acad. Sci., USA, 1993, 60, 6909).
A condition of the process according to the invention is that the molecule libraries must be based on supports. The measurement of a large number of like molecules is thereby made possible and the individual binding behaviour can be adequately characterised in this way. Examples of a suitable support-based system are bacteria within the field of AME or polymer beads within the field of combinatorial chemistry.
Processes for the production of protein libraries on
E. coli
bacteria are known in the literature (Hofnung, Meth. Enzymol. 134, 77 (1991), Klauser et al., EMBO J., 9, 1991 (1990), Fuchs et al., Biotechnology 9, 1369 (1991), Francisco et al., Proc. Natl. Acad. Sci. USA 89, 2713 (1992), Pugsley, Proc. Natl. Acad. Sci. USA 89, 12058 (1992)). In addition, the expression on a phage surface is described (Hoogenboom et al., Immunolog. Reviews 130, 41 (1992)), which is irrelevant to the process according to this invention owing to the phage size (<<1 &mgr;m).
Technical solutions for selection processes for the separation of cells from a large number (>10
6
) are commercially available in the FACS (Fluorescence-Activated Cell Sorter) and MACS (Magnetic Activated Cell Sorter).
Fluorescence-activated cell sorting uses electrostatic principles for the spatial separation. A commercial FACS (Becton & Dickinson: FACStar Plus) is capable of sequentially processing about 10
8
cells per day. But here it has to be taken into account that the useful sorting rate is significantly less than 100%. In very rare events in a cell population, however, high throughputs of about 10
9
are desirable.
Compared with the process according to the invention, in the case of FACS the sorting process moreover takes place directly after the measuring process, so that in the event of a subsequent correction to the threshold values for affinities, the entire sorting process has to be repeated. This is accompanied by a further mechanical stress on the molecule support or on the bacteria.
The MACS sorting process utilises the binding of the relevant cells to magnetic beads. In the separation step, the cells labelled in this manner are retained in the MACS column by an inhomogeneous magnetic field, while the unlabelled cells pass unimpeded through the column. By this process, however, it is possible only to distinguish between magnetic and non-magnetic cells. MACS accordingly permits a rapid processing of large populations, but no information about individual binding events can be obtained.
The separation of beads in combinatorial chemistry is conventionally carried out by a manual method.
This invention is based on the object of developing a process whereby, out of a large number (10
9
) of molecules from a molecule library, it is possible within 24 hours to detect and separate individual objects, which are identified by their particular binding affinity to one or more given ligands. The vitality of the bacterial population is to be preserved for the subsequent propagation (amplification) of bacteria within the field of AME.
This object is fulfilled according to the invention by a process comprising the following steps.
a) The ligands to be bound are labelled with a fluorescent dye and mixed with the molecule library which is in the form of a suspension.
b) The excess ligands not bound to molecules in the molecule library are then washed out and removed.
c) This mixture is plated out on a two-dimensional substrate.
d) The substrate thus coated is placed under a fluorescence microscope. The local fluorescence intensities observed on the substrate are then identified electrooptically and by means of a CCD camera are digitally identified in the form of a total image or stepwise in the form of partial images and are electronically discriminated in accordance with given selection criteria in the form of threshold values, and the objects situated on the substrate, which are characterised by a high binding affinity of the ligands for molecules of the molecule library and thereby fulfill the selection criteria, are identified and localised by storage in an image calculator.
e) The objects thus selected are then positioned sequentially at the operating point of a separation actuator by a relative displacement—the coordinates of which are controlled by the image calculator—between the substrate and a separation actuator, are removed from the substrate and separately deposited locally.
The identification and separation of molecules from a library of biomolecules in accordance with the above procedure assumes that these molecules are present in sufficient number on the surface of a suitable biological cell. To this end, the genetic information for a biomolecule is funnelled into a large population of microorganisms, which thereupon synthesise the biomolecule. The processes which include this control of a microorganism for biochemical synthesis are collectively termed expression systems. The diversity of the library arises as a result of the diversity of mutants of the funnelled information. Here complexities of >10
9
can be produced.
The electrooptical identification of the local fluorescence intensities on the substrate is advantageously carried out in the form of a total image or stepwise in the form of partial images by means of a CCD camera. The total image or the partial images, optionally after a data reduction, are then passed to the image calculator for storage and for further processing by image analysis and evaluation in accordance with th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process and device for the screening of molecules with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process and device for the screening of molecules with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process and device for the screening of molecules with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3196358

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.