Masa flavored cereal germ and a process for making same

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Plant material is basic ingredient other than extract,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S506000, C426S507000, C426S508000, C426S510000, C426S626000

Reexamination Certificate

active

06638558

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a cooked cereal germ having an enhanced masa flavor and a process for making the cooked masa flavored cereal germ. More particularly, this invention relates to cooked corn germ which has been cooked with water and an alkaline agent to provide an alkaline cooked cereal germ with an enhanced or robust masa flavor.
BACKGROUND OF THE INVENTION
For the preparation of refined foods, cereal grain is usually subjected to milling processes. In these processes, the germ, which is rich in minerals and vitamins, is separated from the bran and endosperm of the cereal. Refined mill products, such as flaking grits and masa flour, consist chiefly of the endosperm. Portions of the corn kernel removed from the endosperm, such as the germ, are considered to be low value by-products which are often put into animal feed. The invention described herein enhances the value of cereal germ by making the germ useful in making masa flavored food products for human consumption.
Further, masa flavored food products are gaining in popularity. Most or practically all of these products are masa flour (corn flour) based. As a result it would be advantageous to impart a masa flavor to traditionally non-masa food products such as wheat flour bread, wheat flour tortillas, wheat flour pizza crust, wheat flour muffins, wheat based breakfast cereals, cakes, cookies, crackers, corn dogs, pretzels and fillings for tacos, tamales and tortillas. Using masa flour directly in non-masa based products such as wheat flour products, however, will change the structure of the food because relatively large amounts of masa flour would be needed to impart a masa flavor. With a masa flavor enhancer, however, a masa flavor can be imparted to a food product without changing the structure of the food because small amounts of a flavor enhancer can be used to impart a masa flavor. This can reduce development costs of producing non-masa flour products which have a masa taste.
COMPONENTS OF THE MAIZE (CORN) KERNEL
Botanically, a maize kernel is known as a caryopsis, a dry, one-seeded, nutlike berry in which the fruit coat and the seed are fused to form a single grain. Mature kernels are composed of four major parts: pericarp (hull or bran), germ (embryo), endosperm and tip cap.
An average composition of whole maize, and its fractions, on a moisture-free (dry) basis is as follows:
TABLE 1
Fraction
of Whole
Kernel
Starch
Protein
Liquid
Sugar
Ash
Maize
%
%
%
%
%
%
Whole
100
71.5
10.3
4.8
2.0
1.4
grain
Endosperm
82.3
86.4
9.4
0.8
0.6
0.3
Germ
11.5
8.2
18.8
34.5
10.8
10.1
Pericarp
5.3
7.3
3.7
1.0
0.3
0.8
Tip cap
0.8
5.3
9.1
3.8
1.6
1.6
Germ: The scutellum and the embryonic axis are the two major parts of the germ. The scutellum makes up 90% of the germ, and stores nutrients mobilized during germination. During this transformation, the embryonic axis grows into a seedling. The germ is characterized by its high fatty oil content. It is also rich in crude proteins, sugars, and ash constituents. The scutellum contains oil-rich parenchyma cells which have pitted cell walls. Of the sugars present in the germ, about 67% is glucose.
Endosperm: The endosperm contains the starch, and is lower in protein content than the germ and the bran. It is also low in crude fat and ash constituents.
Pericarp: The maize kernel is covered by a water-impermeable cuticle. The pericarp (hull or bran) is the mature ovary wall which is beneath the cuticle, and comprises all the outer cell layers down to the seed coat. It is high in non-starch-polysaccarides, such as cellulose and pentosans. A pentosan is a complex carbohydrate present in many plant tissues, particularly brans, characterized by hydrolysis to give five-carbon-atom monosaccharides (pentoses). It is any member of a group of pentose polysaccharides having the formula (C
5
H
8
O
4
)
n
found in various foods and plant juices. Because of its high fiber content, the pericarp is tough.
Tip cap: The tip cap, where the kernel is joined to the cob, is a continuation of the pericarp, and is usually present during shelling. It contains a loose and spongy parenchyma.
CORN MILLING
In milling corn to obtain grits and flour, the corn is first cleaned, and is then usually passed through a scourer to remove the tip from the germ end of the kernel. The corn is then tempered by the addition of water to a moisture content which is generally from about 21% to about 24%. The corn is frequently then passed through a corn degerminator, which frees the bran and germ, and breaks the endosperm into two or more pieces. The stock from the degerminator is generally dried to about 14% to 16% moisture in revolving dryers equipped with steam coils, and is then cooled in revolving or gravity-type coolers. The stock is next passed through a hominy separator, which first separates the fine particles, and then grades and polishes the larger fragments into four sizes. The various grades of broken corn are passed through centrifugal-type aspirators to remove any loose bran from the endosperm fragments, and produce milled cereal by-products such as aspirated bran.
MASA FLOUR AND DOUGH
Nixtamalization is the cooking of cereal grain, such as whole corn kernels, in a medium which usually contains an alkaline agent, such as water containing lime Ca(OH)
2
. Thereafter there is steeping (soaking) of the cereal grain for a period of time, for example, for about three to about fourteen hours, subsequent draining of any remaining cooking liquor, washing of the cereal grains, and grinding of the cereal grains to make with drying a cereal grain flour, which may be added with water to make a cereal grain dough from which tortillas and related products may be prepared.
SUMMARY OF THE INVENTION
The present invention provides a germ-based additive for enhancing masa flavor in food products produced from flour or dough which includes the additive. The invention also includes food products which include the additive in an amount effective for producing a masa flavor without the use of masa flour. In one aspect the food products include the additive to provide the masa taste and are substantially without masa flour. Hence, the additive of the invention makes it possible to add masa flavor to foods that are, for example wheat based, and allow the foods to retain their original organoleptic properties such as texture, mouthfeel and appearance. These properties would be lost if large amounts of masa flour is used to impart masa flavor. If a bread was made with a 50—50 blend of masa/wheat flour, the bread would not have the desired and typical aerated, spongy texture of wheat bread, but rather a coarse and heavy texture. If the additive of the invention is used, however, at a level of 10 weight percent, the resulting bread would be aerated, spongy and yet also have a much stronger masa flavor than the bread made with 50—50 masa flour and wheat flour.
The masa flavor enhancing additive is prepared through cooking cereal germ with water and an alkaline agent, such as lime, for a time and temperature which is effective for providing an alkaline cooked cereal germ with a masa flavor. An aspect of the invention includes drying the alkaline cooked cereal and milling the alkaline cooked cereal before or after drying to provide the alkaline cooked cereal germ with a particle size which is suitable for a desired food application.
In one aspect, the cereal germ used in preparing the masa flavor enhancing additive has a cereal grain germ content of at least about 25%, particularly at least about 50%, and more particularly at least about 90%, and up to about 100% thereof, by weight percentage. The cereal germ also contains not more than about 40 weight percent endosperm and not more than about 75 weight percent bran. In another aspect, the cereal starting material used in the preparation of the masa flavor enhancing additive has a relatively high protein content material, such as at least about 15% by weight protein content. The germ can be wheat germ, oat germ, barley germ, rice germ, rye germ, sorghum germ and mixtures thereof, b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Masa flavored cereal germ and a process for making same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Masa flavored cereal germ and a process for making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Masa flavored cereal germ and a process for making same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3131392

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.