Removal of heat from SOI device

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S149000, C438S479000, C438S517000

Reexamination Certificate

active

06515333

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to semiconductor-on-insulator (SOI) devices and to methods of forming the same and, more particularly, to SOI devices and methods for forming same which promote the removal of heat from the SOI devices.
BACKGROUND ART
Traditional semiconductor-on-insulator (SOI) integrated circuits typically have a silicon substrate with a buried oxide (BOX) layer disposed thereon. An active silicon layer is disposed on the opposite side of the BOX layer from the silicon substrate. Within the active silicon layer, active devices, such as transistors, are formed in active regions. The size and placement of the active regions are defined by shallow trench isolation (STI) regions. As a result of this arrangement, the active devices are isolated from the silicon substrate by the BOX layer. In addition, a body region of each SOI transistor does not have body contacts and is therefore “floating.”
Such SOI structures offer potential advantages over bulk chips for the fabrication of high performance integrated circuits for digital circuitry. Such digital circuitry is typically made from partially-depleted metal oxide semiconductor field effect transistors (MOSFETs). These SOI structures provide a significant gain in performance by having lower parasitic capacitance (due to the insulator layer) and increased drain current due to the floating body charging effects. These performance gains result from: a) no connection being made to the channel region, and b) charging of the floating body providing access toward a majority of carriers which dynamically lowers the threshold voltage and increased drain current. Devices, such as metal oxide silicon field effect transistors (MOSFETs), have a number of advantages when formed on SOI wafers versus bulk silicon MOS transistors. These advantages include: reduced source/drain capacitance that results in improved speed performance at higher-operating frequencies; reduced N
+
to P
+
spacing and thus higher packing density due to ease of isolation; absence of latch-up; lower voltage applications; and higher “soft error” upset immunity (i.e., the immunity to the effects of alpha particle strikes).
Although there are significant advantages associated with SOI technology, there are some disadvantages as well. For example, poor heat removal from electrical devices on an SOI substrate is a significant disadvantage. Electrical devices generate heat, and the inability to remove or dissipate the heat results in poor and/or inconsistent performance of the electrical devices, or even in some instances device and/or substrate degradation.
The poor heat removal for electrical devices on SOI substrates is primarily because of the buried oxide insulation layer. More specifically, the buried oxide insulation layer has a markedly lower thermal conductivity than the thermal conductivity of conventional bulk silicon (typically used as semiconductor substrates), which typically surrounds semiconductor devices. For example, the thermal conductivity of silicon dioxide in the BOX layer is about 1.4 W/m° C. while the thermal conductivity of conventional bulk silicon is about 150 W/m° C. As a result, the buried oxide layer undesirably thermally insulates the electrical device region in SOI substrates.
In view of the aforementioned disadvantages, there is a need for SOI devices of improved quality, particularly SOI devices having improved heat removal characteristics, and more efficient methods of making such SOI devices.
SUMMARY OF THE INVENTION
According to the invention, a silicon-on-insulator (SOI) device comprises a substrate having a buried oxide layer (BOX) disposed on the upper surface of the substrate. The BOX has an upper surface and a cavity extending from the upper surface partially therein. An active layer is disposed on the BOX layer. The active layer extends into the cavity. In a conventional MOSFET or transistor formed on the active layer, there is a source, a drain, and a body disposed therebetween, wherein the body extends into and generally fills the cavity.
According to the invention, the cavity has a bottom surface spaced a distance “x” from the lower surface of the BOX layer and the BOX layer has a width “w”, wherein “x” is less than “w”. The bottom surface of the cavity is spaced a distance “x” of 100 Å to 500 Å from the lower surface of the BOX layer. Also, the distance “x” is from 10 percent to 25 percent of the width “w” of the BOX layer. Moreover, the width “w” of the BOX layer is from about 1000 Å to about 2000 Å.
According to the invention, a method of fabricating the silicon-on-insulator (SOI) device having a substrate with a lower surface of a buried oxide (BOX) layer disposed thereon is disclosed. The method comprising the steps of providing a silicon substrate with a BOX layer; depositing a nitride layer on surface of the BOX layer followed by depositing a gate mask layer on nitride layer; removing a central section of nitride layer where gate is to be located; stripping away the gate mask; controlled etching of the central section of the Box layer to form a cavity; and removing the first and second nitride regions.
Further according to the invention, the method includes the step of growing/depositing an active layer of silicon on the BOX layer whereby the active layer extends into the cavity. The method can include doping the active layer to form a source, a drain, and a body disposed therebetween so that the body extends into the cavity. The method can further including the steps of forming STI regions at opposite ends of the active layer; and depositing gate oxide on outer surface of the body and on the outer surface of the STI regions. Also, the method includes depositing the silicon using epitaxy.
According to the invention, a method is provided for fabricating an intermediate wafer used in the construction of a silicon-on-insulator (SOI) device having a silicon substrate with a lower surface of a buried oxide layer (BOX) disposed thereon. The method comprising the steps of: providing a silicon substrate with a BOX layer; depositing a nitride layer on surface of the BOX layer followed by depositing a gate mask layer on nitride layer; removing a central section of nitride layer where gate is to be located; stripping away the gate mask; controlled etching of the central section of the Box layer to form a cavity; and removing the first and second nitride regions.


REFERENCES:
patent: 6121661 (2000-09-01), Assaderaghi et al.
patent: 6190985 (2001-02-01), Buynoski
patent: 6288426 (2001-09-01), Gauthier, Jr. et al.
patent: 2002/0008283 (2002-01-01), Ju
patent: 2002/0033189 (2002-03-01), Macris

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Removal of heat from SOI device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Removal of heat from SOI device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Removal of heat from SOI device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3116282

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.