Radiation imagery chemistry: process – composition – or product th – Radiation modifying product or process of making – Radiation mask
Reexamination Certificate
2001-02-07
2003-06-10
Rosasco, S. (Department: 1756)
Radiation imagery chemistry: process, composition, or product th
Radiation modifying product or process of making
Radiation mask
Reexamination Certificate
active
06576376
ABSTRACT:
FIELD OF THE INVENTION
The present specification relates generally to the field of integrated circuits and to methods of manufacturing integrated circuits. More particularly, the present specification relates to a tri-tone mask process for dense and isolated patterns.
BACKGROUND OF THE INVENTION
Semiconductor devices or integrated circuits (ICs) can include millions of devices, such as, transistors. Ultra-large scale integrated (ULSI) circuits can include complementary metal oxide semiconductor (CMOS) field effect transistors (FET). Despite the ability of conventional systems and processes to put millions of devices on an IC, there is still a need to decrease the size of IC device features, and, thus, increase the number of devices on an IC.
One limitation to the smallness of IC critical dimensions is conventional lithography. In general, projection lithography refers to processes for pattern transfer between various media. According to conventional projection lithography, a silicon slice, the wafer, is coated uniformly with a radiation-sensitive film or coating, the photoresist. An exposing source of radiation (such as light, x-rays, or an electron beam) illuminates selected areas of the surface through an intervening master template, the mask, for a particular pattern. The lithographic coating is generally a radiation-sensitized coating suitable for receiving a projected image of the subject pattern. Once the image is projected, it is indelibly formed in the coating. The projected image may be either a negative or a positive image of the subject pattern.
Exposure of the coating through a photomask or reticle causes the image area to become selectively crosslinked and consequently either more or less soluble (depending on the coating) in a particular solvent developer. The more soluble (i.e., uncrosslinked) or deprotected areas are removed in the developing process to leave the pattern image in the coating as less soluble polymer.
Projection lithography is a powerful and essential tool for microelectronics processing. As feature sizes are driven smaller and smaller, optical systems are approaching their limits caused by the wavelengths of the optical radiation.
One alternative to projection lithography is EUV lithography. EUV lithography reduces feature size of circuit elements by lithographically imaging them with radiation of a shorter wavelength. “Long” or “soft” x-rays (a.k.a, extreme ultraviolet (EUV)), wavelength range of lambda=50 to 700 angstroms are used in an effort to achieve smaller desired feature sizes.
In EUV lithography, EUV radiation can be projected onto a resonant-reflective reticle. The resonant-reflective reticle reflects a substantial portion of the EUV radiation which carries an IC pattern formed on the reticle to an all resonant-reflective imaging system (e.g., series of high precision mirrors). A demagnified image of the reticle pattern is projected onto a resist coated wafer. The entire reticle pattern is exposed onto the wafer by synchronously scanning the mask and the wafer (i.e., a step-and-scan exposure).
Although EUV lithography provides substantial advantages with respect to achieving high resolution patterning, errors may still result from the EUV lithography process. For instance, the reflective reticle employed in the EUV lithographic process is not completely reflective and consequently will absorb some of the EUV radiation. The absorbed EUV radiation results in heating of the reticle. As the reticle increases in temperature, mechanical distortion of the reticle may result due to thermal expansion of the reticle.
Both conventional projection and EUV lithographic processes are limited in their ability to print small features, such as, contacts, trenches, polysilicon lines or gate structures. As such, the critical dimensions of IC device features, and, thus, IC devices, are limited in how small they can be.
The ability to reduce the size of structures, such as, shorter IC gate lengths depends, in part, on the wavelength of light used to expose the photoresist. In conventional fabrication processes, optical devices expose the photoresist using light having a wavelength of 248 nm (nanometers), but conventional processes have also used the 193 nm wavelength. Further, next generation lithographic technologies may progress toward a radiation having a wavelength of 157 nm and even shorter wavelengths, such as those used in EUV lithography (e.g., 13 nm).
Phase-shifting mask technology has been used to improve the resolution and depth of focus of the photolithographic process. Phase-shifting mask technology refers to a photolithographic mask which selectively alters the phase of the light passing through certain areas of the mask in order to take advantage of destructive interference to improve resolution and depth of focus. For example, in a simple case, each aperture in the phase-shifting mask transmits light 180 degrees out of phase from light passing through adjacent apertures. This 180 degree phase difference causes any light overlapping from two adjacent apertures to interfere destructively, thereby reducing any exposure in the center “dark” comprising an opaque material, such as chrome.
An exemplary phase-shifting mask
10
is illustrated in FIG.
1
. Phase-shifting mask
10
includes a transparent layer
12
and an opaque layer
14
. Opaque layer
14
provides a printed circuit pattern to selectively block the transmission of light from transparent layer
12
to a layer of resist on a semiconductor wafer. Transparent layer
12
includes trenches
16
which are etched a predetermined depth into transparent layer
12
. The light transmitted through transparent layer
12
at trenches
16
is phase-shifted 180 degrees from the transmission of light through other portions of phase-shifting mask, such as portions
18
. As the light travels between phase-shifting mask
10
and the resist layer of a semiconductor wafer below (not shown), the light scattered from phase-shifting mask
10
at trenches
16
interferes destructively with the light transmitted through phase-shifting mask
10
at portions
18
, to provide improved resolution and depth of focus.
As mentioned, various different wavelengths of light are used in different photolithographic processes. The optimal wavelength of light is based on many factors, such as the composition of the resist, the desired critical dimension (CD) of the integrated circuit, etc. Often, the optimal wavelength of light must be determined by performing a lithography test with photolithographic equipment having different wavelengths. When a phase-shifting mask technique is utilized, two different phase-shifting masks must be fabricated, each mask having trenches
16
suitable for phase-shifting light of the desired wavelength. The fabrication of phase-shifting masks is costly. Further, comparison of the effect of the two different wavelengths printing processes is difficult and requires complex software processing to provide a suitable display.
In conventional systems, application of a high transmittance attenuated phase-shifting mask (PSM) makes it difficult to improve the photomargin, or depth of focus, at dense and isolated pitches at the same time. For example, if a high coherence level (&sgr;) or off-axis illumination is used, it is possible to obtain a large depth of focus at a dense pitch. A high coherence level can be at a pupil fill factor (PFF) of 0.2 or less. However, the depth of focus is small at isolated pitches using high coherence levels (&sgr;). Pitch is commonly known as the distance between adjacent features or structures. Even using shorter lithographic wavelengths and various resolution enhancement techniques, the pitch is usually constrained to a dimension approximately equal to the lithographic wavelength. Furthermore, despite using optical proximity correction (OPC), the depth of focus for isolated pitches cannot be improved. If a low coherence level (&sgr;) is used, a large depth of focus can be obtained at isolated pitches. However, the depth of focus is very small or virtually not
Foley & Lardner
Rosasco S.
LandOfFree
Tri-tone mask process for dense and isolated patterns does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tri-tone mask process for dense and isolated patterns, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tri-tone mask process for dense and isolated patterns will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3086927