Method for combining transfer functions with predetermined...

Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Particular communication authentication technique

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C380S046000, C708S254000

Reexamination Certificate

active

06598162

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to the protection of digital information. More particularly, the invention relates to a method for combining transfer functions with predetermined key creation.
BACKGROUND OF THE INVENTION
Increasingly, commercially valuable information is being created and stored in “digital” form. For example, music, photographs and video can all be stored and transmitted as a series of numbers, such as 1's and 0's. Digital techniques let the original information be recreated in a very accurate manner. Unfortunately, digital techniques also let the information be easily copied without the information owner's permission.
Because unauthorized copying is clearly a disincentive to the digital distribution of valuable information, it is important to establish responsibility for copies and derivative copies of such works. For example, if each authorized digital copy of a popular song is identified with a unique number, any unauthorized copy of the song would also contain the number. This would allow the owner of the information, such as a song publisher, to investigate who made the unauthorized copy. Unfortunately, it is possible that the unique number could be erased or altered if it is simply tacked on at the beginning or end of the digital information.
As will be described, known digital “watermark” techniques give creators and publishers of digitized multimedia content localized, secured identification and authentication of that content. In considering the various forms of multimedia content, such as “master,” stereo, National Television Standards Committee (NTSC) video, audio tape or compact disc, tolerance of quality will vary with individuals and affect the underlying commercial and aesthetic value of the content. For example, if a digital version of a popular song sounds distorted, it will be less valuable to users. It is therefore desirable to embed copyright, ownership or purchaser information, or some combination of these and related data, into the content in a way that will damage the content if the watermark is removed without authorization.
To achieve these goals, digital watermark systems insert ownership information in a way that causes little or no noticeable effects, or “artifacts,” in the underlying content signal. For example, if a digital watermark is inserted into a digital version of a song, it is important that a listener not be bothered by the slight changes introduced by the watermark. It is also important for the watermark technique to maximize the encoding level and “location sensitivity” in the signal to force damage to the content signal when removal is attempted. Digital watermarks address many of these concerns, and research in the field has provided extremely robust and secure implementations.
What has been overlooked in many applications described in the art, however, are systems which closely mimic distribution of content as it occurs in the real world. For instance, many watermarking systems require the original un-watermarked content signal to enable detection or decode operations. These include highly publicized efforts by NEC, Digimarc and others. Such techniques are problematic because, in the real world, original master copies reside in a rights holders vaults and are not readily available to the public.
With much activity overly focused on watermark survivability, the security of a digital watermark is suspect. Any simple linear operation for encoding information into a signal may be used to erase the embedded signal by inverting the process. This is not a difficult task, especially when detection software is a plug-in freely available to the public, such as with Digimarc. In general, these systems seek to embed cryptographic information, not cryptographically embed information into target media content.
Other methods embed ownership information that is plainly visible in the media signal, such as the method described in U.S. Pat. No. 5,530,739 to Braudaway et al. The system described in Braudaway protects a digitized image by encoding a visible watermark to deter piracy. Such an implementation creates an immediate weakness in securing the embedded information because the watermark is plainly visible. Thus, no search for the embedded signal is necessary and the watermark can be more easily removed or altered. For example, while certainly useful to some rights owners, simply placing the symbol “Ĉ” in the digital information would only provide limited protection. Removal by adjusting the brightness of the pixels forming the “Ĉ” would not be difficult with respect to the computational resources required.
Other relevant prior art includes U.S. Pat. Nos. 4,979,210 and 5,073,925 to Nagata et al., which encodes information by modulating an audio signal in the amplitude/time domain. The modulations introduced in the Nagata process carry a “copy/don't copy” message, which is easily found and circumvented by one skilled in the art. The granularity of encoding is fixed by the amplitude and frequency modulation limits required to maintain inaudibility. These limits are relatively low, making it impractical to encode more information using the Nagata process.
Although U.S. Pat. No. 5,664,018 to Leighton describes a means to prevent collusion attacks in digital watermarks, the disclosed method may not actually provide the security described. For example, in cases where the watermarking technique is linear, the “insertion envelope” or “watermarking space” is well-defined and thus susceptible to attacks less sophisticated than collusion by unauthorized parties. Over-encoding at the watermarking encoding level is but one simple attack in such linear implementations. Another consideration not made by Leighton is that commercially-valuable content may already exist in a unwatermarked form somewhere, easily accessible to potential pirates, gutting the need for any type of collusive activity. Digitally signing the embedded signal with preprocessing of watermark data is more likely to prevent successful collusion. Furthermore, a “baseline” watermark as disclosed is quite subjective. It is simply described elsewhere in the art as the “perceptually significant” regions of a signal. Making a watermarking function less linear or inverting the insertion of watermarks would seem to provide the same benefit without the additional work required to create a “baseline” watermark. Indeed, watermarking algorithms should already be capable of defining a target insertion envelope or region without additional steps. What is evident is the Leighton patent does not allow for initial prevention of attacks on an embedded watermark as the content is visibly or audibly unchanged.
It is also important that any method for providing security also function with broadcasting media over networks such as the Internet, which is also referred to as “streaming.” Commercial “plug-in” products such as RealAudio and RealVideo, as well as applications by vendors VDONet and Xtreme, are common in such network environments. Most digital watermark implementations focus on common file base signals and fail to anticipate the security of streamed signals. It is desirable that any protection scheme be able to function with a plug-in player without advanced knowledge of the encoded media stream.
Other technologies focus solely on file-based security. These technologies illustrate the varying applications for security that must be evaluated for different media and distribution environments. Use of cryptolopes or cryptographic containers, as proposed by IBM in its Cryptolope product, and InterTrust, as described in U.S. Pat. Nos. 4,827,508, 4,977,594, 5,050,213 and 5,410,598, may discourage certain forms of piracy. Cryptographic containers, however, require a user to subscribe to particular decryption software to decrypt data. IBM's InfoMarket and InterTrust's DigiBox, among other implementations, provide a generalized model and need proprietary architecture to function. Every user must have a subscription or registration with the party

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for combining transfer functions with predetermined... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for combining transfer functions with predetermined..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for combining transfer functions with predetermined... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3067741

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.