Method and apparatus for call distribution and override with...

Multiplex communications – Data flow congestion prevention or control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S410000

Reexamination Certificate

active

06563788

ABSTRACT:

FIELD OF THE INVENTION
The present invention is in the field of telephony including multimedia communications. The present invention has particular application to methods for call priority assignment, distribution, and override for call distributing and routing functions associated with incoming calls from multiple service control points (SCP's) to a communication center. The methods pertain more particularly to assigning priority states to calls and applying-fairness treatment associated with requested DN's as applied to the separate external SCP sources.
BACKGROUND OF THE INVENTION
The present invention relates in preferred embodiments to call-centers in the art of telephony systems. Call centers are typically hosted by a company or organization for purposes of providing a service to clients, such as technical assistance or catalogue sales and the like. In a typical call center agents are employed at agent stations having at least one telephone, and in many cases other equipment, such as a personal computer with a video display unit (PC/VDU).
Modem call centers typically have call-switching equipment for directing incoming calls to telephones at agent stations, and computer integration with the switching equipment is now common. This technique is known in the art as computer telephony integration (CTI). In a CTI system a processor is connected to the switching equipment by a CTI link, and the processor runs CTI applications controlling the switch. PC/VDUs at agent stations may be interconnected on a local area network (LAN) also connected to the CTI processor.
Development of CTI call centers has made it possible for agents to interact with callers (clients) in more ways than just by telephone. In a suitably equipped call center, agents can operate with E-mail, Video mail, Video calls, and Internet Protocol Network Telephony (IPNT) calls as well as plain old telephony service (POTS) calls, which are more recently classified as connection-orientated-switched-telephony (COST). In more recent art, the term call-center could arguably be discarded for the purpose of discussion with the term communication center being more appropriately applied to reflect added capabilities. Therefore, the term communication center will be used hereinafter as a substituted descriptive term that describes a call or call-in center of more recent art.
As previously described, a modern communication center may be linked to other communication centers, databases, and the like in a variety of ways, such as by local area networks (LAN), wide area networks (WAN), including the World Wide Web (WWW).
Communication centers are organized to receive and distribute incoming calls to a plurality of agents at the center. There may be a large volume of incoming calls and a large number of agents. As described above, calls are not limited to COST calls, but may include communications of many other sorts. Call routing to and within call centers involves processors and software dedicated to directing calls to appropriate agents for processing and response.
An organization having one or more communication centers for serving customers typically provides one or more telephone numbers to the public or to their customer base, or both, that may be used to reach the service. The number or numbers may be published on product packaging, in advertisements, in user manuals, in computerized help files, and the like.
There are basically two scenarios. If the organization providing the service has a single communication center, the number will be to that center and all further routing to an agent will be performed within center. If there are several communication centers, the organization may provide several numbers, one for each communication center, and the customer may be expected to use the number for the closest center, or for the center advertised to provide specifically the service he or she might need. In some cases the number provided will connect the caller with a first Service Control Point (SCP) which is adapted to pre-process incoming calls and forward the calls to other call centers.
Routing of calls, then, may be on several levels. Pre-routing may be done at Service Control Points (SCPs) or other network access points at the network level and further routing may be, and generally is, accomplished at individual communication centers.
To distribute incoming calls to agents in a communication center, the distribution system has to have some criteria for distribution. Most commonly there is capability for the distribution system to track which phones are on hook or off hook, so the system may monitor which agents are busy on calls or not busy. In the simplest system, then, calls are distributed on a first-in-first-out basis to available agents.
It has occurred to the inventors that a desirable goal relating to call center communication is to have agents busy on high priority calls rather than spending a lot of time covering calls of a lesser importance. For example, a high priority call may be a sales order call wherein the caller is purchasing a product or service over the telephone. A lesser priority call may be a caller who is just curious about the product or service and has a few questions to ask the agent. In a typical first in first out (FIFO) queue situation, the fist call in is the first call out regardless of importance of the call, and there is typically no facility for prioritizing calls. It would be desirable as well to be able to transfer a higher priority call to be taken by an agent who is currently engaged with a lower priority call, without having to lose the original call.
An issue that can complicate achievement of the desirable goals described above arises when incoming calls to a communication center are sourced from separate routing systems in a network that experience varied latency rates such as from multiple SCP's.
In a very large communication center, it is desired that all incoming calls whether from a COST network or from an Internet-protocol-network-telephony (IPNT) network are handled efficiently by available agents. In some cases calls are routed from network level to a call center, and then further routed to agents at the communication center. Calls are typically distributed to such agents based on availability of the agent, and in this system availability of agents is tracked at the call center level. In other systems, employing what the inventors term agent-level routing, Service Control Points (SCPs) in the network route calls to agent level at call centers. In this arrangement agent availability is typically tracked at the network level, and updated from the call-center level.
In either system described above, if a first agent is not available, a caller must wait for the agent to become available, or be transferred to another available agent. When incoming calls to a communication center are from different routing systems in a telephony network it becomes difficult to insure equal and fair access to agents for all of the callers. This is due to various states of latency that exist in separate routing systems.
Latency factors such as equipment speed and line speed can vary greatly over large geographical regions within a service network such as a public network. This is due to partly to the fact that older equipment is upgraded to new equipment on a gradual basis. The same is true with network lines and connections. Because of this inconsistency over large portions of a telephony network, some callers or groups of callers to a communication center may inadvertently get much better service because of the fact that they are being routed over faster lines with better equipment. In considering DNT networks, similar latency conditions exist that may cause some callers or groups of callers to receive poor service compared to those routed in over superior connections with superior equipment.
If priority states are to be observed in a communication center where incoming calls are sourced from different routing systems, then it is desirable to blend the two objectives thus taki

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for call distribution and override with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for call distribution and override with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for call distribution and override with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3049061

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.