Method of manufacturing a catheter with a flexible tip and...

Plastic and nonmetallic article shaping or treating: processes – Laser ablative shaping or piercing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S139000, C264S156000, C264S482000, C219S121690, C219S121710

Reexamination Certificate

active

06537480

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to the field of intravascular catheters, and more particularly to a method of selectively removing material from a catheter shaft to produce a strong and flexible dilatation catheter shaft.
Percutaneous intravascular procedures, such as percutaneous transluminal coronary angioplasty (PTCA), were developed to open blocked vessels with as little trauma as possible. In PTCA procedures a guiding catheter having a preformed distal tip is usually percutaneously introduced into the patient's femoral artery by means of a conventional Seldinger technique and retrogradely advanced therein until the distal portion of the guiding catheter is located within the patient's ascending aorta with distal tip of the guiding catheter seated in the ostium of a desired coronary artery. The proximal end of the guiding catheter is torqued from outside the patient to guide distal tip of the guiding catheter into the desired ostium. A guidewire is positioned within an inner lumen of an dilatation catheter and then both are advanced through the guiding catheter to its distal end. The guidewire is first advanced out of the distal end of the guiding catheter into the patient's coronary artery until the distal end of the guidewire crosses a lesion to be dilated. Then the dilatation catheter, having an inflatable balloon on the distal portion thereof, is advanced into the patient's coronary anatomy over the previously introduced guidewire until the balloon of the dilatation catheter is properly positioned across the lesion. Once properly positioned, the dilatation balloon is inflated with liquid one or more times to a predetermined size at relatively high pressures (e.g. greater than 4 atmospheres) so that the stenosis is compressed against the arterial wall and the wall expanded to open up the passageway. Generally, the inflated diameter of the balloon is approximately the same diameter as the native diameter of the body lumen being dilated so as to complete the dilatation but not overexpand the artery wall. After the balloon is finally deflated, blood flow resumes through the dilated artery and the dilatation catheter can be removed therefrom.
Commercially available intravascular balloon catheters used for angioplasty and other vascular procedures usually comprise an elongated shaft with an inflatable dilatation member on a distal portion of the shaft and an adapter on the proximal end of the shaft for the delivery of inflation fluid through an inner lumen extending through the catheter shaft to the interior of the inflatable dilatation member. Typically, the balloon catheter has an outer tubular member with a distal extremity terminating within the balloon interior and an inner tubular member with a distal extremity extending through and slightly beyond the distal end of the balloon. The annular space between the inner and outer members defines the inflation lumen in communication with the balloon interior. Alternatively, a single catheter shaft provided with a plurality of lumens can be used in place of the inner and outer membered shaft. The catheter may be typically be provided with a distal tip that is flexible and tapered.
An essential step in PTCA is maneuvering the catheter over the guidewire until the balloon on the distal end of the catheter is in the desired location within the arterial occlusion. However, maneuvering the dilatation catheter over a guidewire through small branched vessels and through the stenosis requires a distal end that is both flexible and strong, to provide a catheter which is trackable and pushable.
The removal of material from the distal tip of a dilatation catheter to increase its flexibility is disclosed in U.S. Pat. No. 4,960,410 (Pinchuk) and U.S. Pat. No. 5,514,108 (Stevens). When removing material from a catheter shaft, one difficulty has been precisely forming a cut in the catheter shaft. Mechanical and thermal cutting methods disadvantageously displace shaft material during the cutting procedure, which results in an increase in the shaft diameter. For example, mechanical cutting displaces or deforms the shaft material by physically pushing the material to one side. Thermal processing methods of cutting a shaft melt the material, and as the melted material cools it coalesces into spherical beads that are typically greater than about 0.0002 to 0.0005 inches. Such beads form at the edge of the cut, and thus increase the shaft outer diameter from its original dimension at the junction between the cut and uncut material. In the formation of a distal tip taper, previous methods, such as sanding or heat forming, may also leave rough surfaces or displaced material. Such displaced material or rough surfaces undesirably increases the shaft profile and stiffness.
What has been needed is a method of selectively removing material from a polymeric substrate in a precise and controllable manner to produce a flat cut surface without displacing shaft material that increases the shaft outer diameter. The present invention satisfies these and other needs.
SUMMARY OF THE INVENTION
The invention is directed to a method of forming a catheter shaft by precise removal of catheter shaft material using laser radiation in an ultraviolet region, and a catheter, produced therefrom. Using the method of the invention, a catheter shaft can be prepared having a recess or a tapered section with a smooth surface. Additionally, the surface of the shaft adjacent to the recess or tapered section is undisturbed because the method of the invention removes shaft material without significantly affecting, either mechanically or thermally adjacent regions, e.g., increasing the shaft outer diameter from its original dimension. Recesses made into the shaft wall result in improved shaft flexibility while maintaining a significant amount of the original column strength of the shaft.
The method of the invention generally includes removal of catheter shaft material in various patterns and regions along the axis of the shaft to adjust the shaft performance characteristics. In accordance with the invention, the catheter shaft material is removed using laser radiation particularly in the ultraviolet region having a wavelength from about 4 to about 400 nanometers (nm), preferably from about 190 to about 360 nm. Laser radiation in this wavelength vaporizes the polymer material to be removed, while producing little or no mechanical or thermal effects on the remaining adjacent material. Because the material is vaporized by laser radiation at UV wavelengths, the cut material is not physically displaced or deformed as it is when mechanical cutting methods are used. Thermal effects are minimized or eliminated by the laser radiation in the UV wavelengths, the polymeric material is not melted., and the beading up of melted polymeric material produced by thermal processing is avoided. Therefore, a recess produced using the UV wavelengths of the invention has a smooth surface and the adjacent polymeric material is undisturbed so that the original outer diameter of the shaft is not increased.
Precise control over the removal of shaft material is needed in order to vary the catheter characteristics in a repeatable and controllable manner. Precise control is also needed when forming a taper in the shaft distal end, so that a smooth transition in the shaft outer diameter along the length of the catheter is produced.
The laser wavelength and optical set-up for imaging the laser beam on the catheter shaft is selected to precisely control the removal of material in a selected area. The optimal wavelength depends upon the material used to form the catheter shaft. Additionally, the depth of removal of the material is controllable by selection of one or more parameters such as the laser power, pulse rate, removal area size and shape, and the speed movement of the beam or material during the removal. However, the laser radiation must be applied to a given unit area of material, at sufficiently low power, so that the shaft material does not melt during the removal.
The

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of manufacturing a catheter with a flexible tip and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of manufacturing a catheter with a flexible tip and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing a catheter with a flexible tip and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3041047

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.