Protecting smart cards from power analysis with detachable...

Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Protection at a particular protocol layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S300000

Reexamination Certificate

active

06507913

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of Invention
The present invention relates to novel techniques, methods, and apparatus for protecting smart cards from power analysis when they are inserted into a card reader controlled by an adversary.
2. Prior Art
Smart cards are typically used to carry out cryptographic computations based on secret keys embedded in their non-volatile memories. A large number of attacks on smart cards had been published in the scientific literature. Some of these attacks, e.g., fault attacks, as described by D. Boneh, R. A. Demillo and R. J. Lipton, “On the Importance of Checking Cryptographic Protocols for Faults” Proceedings of Eurocrypt 97, Springer-Verlag, 1997, pp 37-51, and probing attacks as described by O. Kommerling and M. Kuhn, “Design Principles for Tamper Resistant Smartcard Processors” http://www.cl.cam.ac.uk/~mgk25/sc99-tamper[-slides].pdf require sophisticated equipment and detailed knowhow of the physical design of the smart card chip. Other attacks, e.g., timing attacks, as described by P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems” Proceedings of Crypto 96, Springer-Verlag, 1996, pp 104-113, and glitch attacks as described by O. Kommerling and M. Kuhn, “Design Principles for Tamper Resistant Smartcard Processors” Proceedings of USENIX Workshop on Smartcard Technology, USENIX Association, pp. 9-20, 1999, can be carried out with a very small investment, but it is relatively easy to protect the software and hardware elements in the smart cards against them.
In 1998 Paul Kocher from Cryptography Research published a new type of attack called Power Analysis, as described by P. Kocher, J. Jaffe, and B. Jun, “Introduction of Differential Power Analysis and Related Attacks” http://www.cryptography.com/dpa/technical/Index.html, 1998, which is very easy to implement, but very difficult to avoid. The attack is based on the analysis of the precise power consumption curve of the smart card during the cryptographic operations. In the Simple Power Analysis (SPA) variant of this attack, the attacker studies a single power consumption curve and determines (among other things) the identity of the instructions and the Hamming weight of data words read from or written into memory at any given clock cycle. In the Differential Power Analysis (DPA) variant of this attack, the attacker studies multiple power consumption curves recorded from different executions with different inputs, and looks for statistical differences between particular subsets of executions which are correlated with particular key bits. Mr. Kocher had stated that with this technique he managed to break essentially all the smart card systems deployed by financial institutions, telephone and satellite companies, governments, etc.
One of the most worrisome aspects of power analysis is that it can be carried out in a completely undetectable way. Many types of personal smart cards are used by inserting them into smart card readers controlled by possibly dishonest entities: An ATM card can be used to withdraw cash from a foreign machine operated by an unfamiliar financial institution, a credit card can be used to pay for merchandise in a mafia-affiliated store, and a mondex-like card can be used to transfer money to a purse owned by a dishonest taxi driver. In all these cases, smart cards which will not be returned (or returned with an obvious damage due to fault or probing attacks) will be immediately reported. However, power analysis can be carried out without leaving any detectable trace whenever the card is used. The result of such an attack is likely to be the creation of duplicate cards or the generation of unrelated payments, which will be very difficult to avoid.
Power attacks are based on the observation that the detailed power curve of a typical smart card (which describes the externally supplied current changes over time) contains a huge amount of information about its secret contents. It is easy to see the exact sequence of events (in the form of individual gates which switch on or off) during the execution of each instruction. For example, the power consumption curves of the addition and multiplication operations have completely different shapes, and the total power consumed by writing 0..0 and 1..1 to memory are noticably different. In fact, it is possible to visually extract the secret key of an RSA operation on a typical smart card just by looking at the power consumption curve, and determining which parts look like a modular squaring and which parts look like a modular multiplication.
DESCRIPTION OF PRIOR ART PROTECTIVE TECHNIQUES
After the publication of Kocher's SPA/DPA techniques, researchers and smart card manufacturers started looking for solutions. Attempts to make the power consumed by smart cards absolutely uniform by changing their physical design failed, since even small nonuniformity in the power consumption curve could be captured by sensitive digital oscilloscopes and analysed to reveal useful information. In addition, forcing all the instructions to switch the same number of gates on or off at the same points in time is a very unnatural requirement, which increases the area and total power consumption of the microprocessor, slows it down, and makes it more vulnerable to other types of attack.
Another proposed solution was to use a capacitor across the power supply lines to smooth the power consumption curve. However, physical limitations restricted the size of the capacitor, and enough nonuniformity was left in the power consumption curve to make this a very partial solution, especially against DPA.
Other proposed techniques include software-based randomization techniques, hardware-based random noise generators, unusual instructions, parallel execution of several instructions, etc. However, randomized software does not help if the attacker can follow individual instructions, and hardware noise can be eliminated by averaging multiple power consumption curves, and thus they provide only limited protection against a determined attacker with sensitive measuring devices.
A different solution is to replace the external power supply by an internal battery on the smart card. If the power pads on the smart card are not connected to the chip, the power consumption cannot be externally measured by the card reader when it communicates with the card. However, the width or thickness of a typical smart card is just 0.76 mm. Since such thin batteries are expensive, last a very shot time, and are difficult to replace, this is not a practical solution.
An alternative solution is to use a rechargeable battery in each smart card. Such a battery can be charged by the external power supply whenever the card is inserted into a card reader, and thus, one does not have to replace it so often. However, thin rechargeable batteries drain quickly even when they are not in use, and thus, in normal intermittent use there is an unacceptably long charging delay before one can start powering the card from its internal battery. In addition, typical rechargeable batteries deteriorate after several hundred charging cycles, and thus, the card has to be replaced after a relatively small number of intermittent transactions.
SUMMARY OF THE INVENTION
According to the present invention, a novel apparatus and method is employed for isolating the power supplied to the card from the power consumed by the card, by using a different kind of separating element between them. The basic idea is to use one or more capacitors in such a way that during at least part of the computation the smart card chip receives its power from a discharging capacitor contained in the smart card, and during some different part of the computation the external power supply charges this capacitor. In this way the power supply curve will only describe the charging process of each capacitor, and not the actual power consumption curve of the smart card chip. The switchover can be triggered either by the voltage of the discharging capacitor falling below a predetermined threshold, or

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Protecting smart cards from power analysis with detachable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Protecting smart cards from power analysis with detachable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protecting smart cards from power analysis with detachable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3029349

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.