Method for fabricating a semiconductor device using a metal...

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – On insulating substrate or layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S166000, C438S486000, C438S476000

Reexamination Certificate

active

06465287

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a semiconductor device typified by a thin film transistor and to a fabrication method thereof.
2. Description of Related Art
Hitherto, a thin film transistor using a silicon film, has been known as well as technology for forming the thin film transistor by using silicon film formed on a glass substrate or quartz substrate.
The glass substrate or quartz substrate is used because the thin film transistor is used for an active matrix type liquid crystal display. While a thin film transistor has been formed by using an amorphous silicon film in the past, attempts have been made to fabricate the thin film transistor by utilizing a silicon film having a crystallinity (referred to as “crystalline silicon film” hereinbelow) in order to enhance its performance.
The thin film transistor using crystalline silicon film allows operation at a high speed as compared to one using amorphous silicon film. Therefore, while peripheral driving circuits of an active matrix liquid crystal display have been composed of external IC circuits, they may be built on the glass substrate or quartz substrate similarly to the active matrix circuit.
Such structure is very advantageous in miniaturizing the whole apparatus and in simplifying the fabrication process, thus leading to the reduction of the fabrication cost.
In general, a crystalline silicon film has been obtained by forming an amorphous silicon film by means of plasma CVD or low pressure thermal CVD and then by crystallizing it by performing a heat treatment or by irradiating laser light.
However, it has been the fact that it is difficult to obtain a required crystallinity across the wide area through the heat treatment because it may cause nonuniformity in the crystallization.
Further, although it is possible to obtain the high crystallinity partly by irradiating laser light, it is difficult to obtain a good annealing effect across the wide area. In particular, the irradiation of the laser light is apt to become unstable under the condition for obtaining the good crystallinity.
Meanwhile, a technology described in Japanese Patent Laid-Open No. Hei. 6-232059 has been known. This technology provides a crystalline silicon film through a heat treatment at a lower temperature than that of the prior art by introducing a metal element (e.g. nickel) which promotes the crystallization of silicon to the amorphous silicon film.
This technology allows high crystallinity to be obtained uniformly across a wide area as compared to the prior art crystallization method by way of bulk heating or crystallization of an amorphous silicon film selectively by means of irradiation of laser light.
However, it is difficult to obtain a crystalline silicon film having high crystallinity and uniformity across a wide area which is required for an active matrix type liquid crystal display.
Further, because the metal element is contained within the film and an amount thereof to be introduced has to be controlled very carefully, there is a problem in its reproducibility and stability (electrical stability of a device obtained).
Still more, there is a problem that an elapsed change of the characteristics of a semiconductor device to be obtained is large or an OFF condition leakage value, in the case of a thin film transistor, is large, for example due to the influence of the remaining metal element. That is, although the metal element which promotes the crystallization of silicon plays the useful role in obtaining the crystalline silicon film, its existence becomes a negative factor which causes various problems after obtaining the crystalline silicon film.
SUMMARY OF THE INVENTION
It is an object of the invention disclosed in the present specification to provide a semiconductor device having excellent characteristics by using a crystalline silicon film having a high crystallinity.
It is an object of the invention disclosed in the present specification to provide a technology for reducing concentration of a metal element within a crystalline silicon film obtained by utilizing the metal element which promotes crystallization of silicon.
It is another object of the present invention to provide a technology which can enhance characteristics and reliability of the semiconductor device thus obtained.
One of the inventions disclosed in the present specification comprises steps of forming an amorphous silicon film on a substrate having an insulated surface; intentionally introducing a metal element which promotes crystallization of silicon to the amorphous silicon film; obtaining a crystalline silicon film by crystallizing the amorphous silicon film by a first heat treatment in the temperature range of 750° C. to 1100° C.; forming an active layer of the semiconductor device by patterning the crystalline silicon film; removing or reducing the metal element existing within the crystalline silicon film by performing a second heat treatment within an oxidizing atmosphere containing a halogen element; removing a thermal oxide film formed in the previous step; and forming another thermal oxide film after removing the thermal oxide film by performing another thermal oxidation, and that a temperature of the second heat treatment is higher than that of the first heat treatment.
An arrangement of another invention comprises steps of forming an amorphous silicon film on a substrate having an insulated surface; intentionally introducing a metal element which promotes crystallization of silicon, to the amorphous silicon film; obtaining a crystalline silicon film by crystallizing the amorphous silicon film by a first heat treatment in the temperature range of 750° C. to 1100° C.; forming an active layer of the semiconductor device by patterning the crystalline silicon film; performing a second heat treatment within an oxidizing atmosphere containing a halogen element to cause the metal element existing within the crystalline silicon film to be gettered to a thermal oxide film to be formed; removing the thermal oxide film formed in the previous step; and forming another thermal oxide film after removing the thermal oxide film by performing another thermal oxidation, and that a temperature of the second heat treatment is higher than that of the first heat treatment.
An arrangement of another invention comprises steps of forming an amorphous silicon film on a substrate having an insulated surface; intentionally and selectively introducing a metal element which promotes crystallization of silicon to the amorphous silicon film; growing crystal in a direction parallel to the film from a region of the amorphous silicon film into which the metal element has been intentionally and selectively introduced by a first heat treatment in the temperature range of 750° C. to 1100° C.; forming an active layer of the semiconductor device by using a region in which crystal has been grown in the direction parallel to the film by patterning; performing a second heat treatment within an oxidizing atmosphere containing a halogen element to cause the metal element existing within the active layer to be gettered to a thermal oxide film to be formed; removing the thermal oxide film formed in the previous step; and forming another thermal oxide film after removing the thermal oxide film by performing another thermal oxidation, and that a temperature of the second heat treatment is higher than that of the first heat treatment.
In the above-mentioned arrangements, it is preferable to use a quartz substrate as the substrate from the aspect of heat resistance.
Further, when a thin film transistor is to be fabricated, it is preferable to form a gate insulating film by utilizing the another thermal oxide film.
Still more, one or a plurality elements selected from Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu and Au may be used as the metal element which promotes the crystallization of silicon.
The concentration of oxygen contained in the amorphous silicon film, i.e. the starting film, is preferably 5×10
17
cm
−3
to 2×10
19
cm
−3

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for fabricating a semiconductor device using a metal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for fabricating a semiconductor device using a metal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating a semiconductor device using a metal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2948586

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.