Non-hydroscopic sweetener composition and method for...

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Noncarbohydrate sweetener or composition containing same

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S103000

Reexamination Certificate

active

06461659

ABSTRACT:

CROSS REFERENCE TO DISCLOSURE DOCUMENT
This application is related to disclosure document No. 462570 filed Sep. 23, 1999.
BACKGROUND OF THE INVENTION
The invention relates to a sweetener composition and, more particularly, to a non-hydroscopic free-flowing particulate sweetener composition which is low caloric, low glycemic and dentally safe, and to a method for preparation of same.
Terpene glycosides from cucurbitaceae and rubus have been desirable in the food and health industries because of their intense sweet flavor combined with non-caloric and low glycemic properties.
In dry form, such terpene glycosides have a light dusty powder characteristic, and are extremely hydroscopic, i.e., they attract water and tend to rapidly clump which is undesirable.
In addition, terpene glycosides have an after taste which can be difficult to adjust for so as to provide a suitable sweetener having a desired clean sweet taste profile.
An additional problem has been that the hydroscopic terpene glycoside powders are very difficult to blend with other compositions, particularly with non-hydroscopic ingredients.
It is clear that the need remains for a sweetener composition which takes advantage of the flavor benefits of terpene glycosides without the problems associated with its hydroscopic nature. The need further remains for a sweetener composition utilizing terpene glycosides which has a clean and sweet taste profile.
It is therefore the primary object of the present invention to provide a sweetener composition which is essentially non-hydroscopic.
It is a further object of the present invention to provide a sweetener composition which has an excellent taste profile with no after taste.
It is a still further object of the present invention to provide a method for producing a dry sweetener composition containing terpene glycosides.
Other objects and advantages will appear hereinbelow.
SUMMARY OF THE INVENTION
In accordance with the present invention, the foregoing objects and advantages have been readily attained.
According to the invention, a particulate sweetener composition is provided which comprises a terpene glycoside component; a sugar alcohol component; and a terpene glycoside carrier component, wherein the composition is non-hydroscopic.
In further accordance with the invention, a method for making a sweetener composition has been provided, which method comprises the steps of providing a particulate terpene glycoside component; providing a terpene glycoside carrier component; coating the carrier component with the particulate terpene glycoside component so as to provide sub-particles of said fructose component coated with said terpene glycoside component; providing a particulate sugar alcohol component; mixing the sub-particles with the particulate sugar alcohol component in a humid environment so as to provide wet particles containing the terpene glycoside component, the carrier component and the sugar alcohol component; and drying the wet particles so as to provide a dry particulate sweetener composition.
DETAILED DESCRIPTION
The invention relates to a sweetener composition and, more particularly, to a non-hydroscopic particulate sweetener composition containing terpene glycosides which has an excellent sweet taste profile and which is low caloric and low glycemic.
In accordance with the invention, the sweetener composition includes a terpene glycoside component, a sugar alcohol component and a terpene glycoside carrier component which is preferably fructose. While the terpene glycoside component and fructose component are both hydroscopic in nature, the sugar alcohol component is advantageously non-hydroscopic and the final sweetener composition is non-hydroscopic.
As used herein, the term hydroscopic relates to a quality or nature of a material wherein the material attracts water. Conversely, a product which is non-hydroscopic does not tend to attract water. This characteristic may best be measured by measuring flowability of a composition after exposure to moisture or water source. In accordance with the present invention and disclosure, a product will be considered to be non-hydroscopic if, after being exposed to humidity of about 80% for a period of about 168 hours and a temperature 70-80° F., at least about 80% wt. of the composition remains free flowing and non-clumping when passed through a 20 mesh screen. In this regard, it is preferred to obtain a flow rate of 95% wt. under such circumstances.
Fructose is an advantageous sweetener suitable for diabetic use, but is not satisfactory for diet use due to its high caloric content (4 Calories/g). Fructose has a mean particle size range of 0.35-0.55 mm that makes it easy to flow, but hydroscopicity makes it clump when stored.
Erythritol is a sugar alcohol which is low glycemic, has a clean taste, and is low caloric (0.2 calorie/g) but has a low sweet intensity. Crystalline erythritol has a particle size of typically between about 0.2 and about 0.5 mm and in some cases greater than or equal to 1 mm which makes it difficult to blend with fine hydroscopic powders. Erythritol is also available in powder form having a much smaller particle size preferably less than or equal to about 0.2 mm. Erythritol crystals can be ground to a powder which is non-hydroscopic, but the powder easily clumps due to molecular crystalline forces or forces of attraction.
The terpene glycoside component of the sweetener composition of the present invention is advantageously naturally occurring terpene glycosides which can be extracted from members of the cucurbitaceae family and the rubus family. Particularly preferred terpene glycosides include triterpene glycoside extract from the cucurbitaceae family, preferably from Siraitia grosvenori which produces a kiwi-like fruit, and diterpene glycosides from the rubus family, preferably rubus suavissimus. Terpene glycosides from other botanical families are useful as well, such as those from stevia.
Particularly preferred terpene glycosides are mogroside, rubusoside and stevioside. Most preferable terpene glycosides include mogroside IV, mogroside V and siamenoside I, which are preferably obtained from the genus/species S. grovenorii, S. siamensis, S. silomaradiae, S. sikkimensis, S. africana, S. borneensis and S. taiwaniana. The preferred rubusosides are preferably obtained from the genus/species rubus suavissimus, blackberry, kiwi, raspberry, blueberry and genus/species of the rubus family. Preferred steviosides are those obtained from stevia rebaudiana.
The sugar alcohol component is preferably a non-hydroscopic sugar alcohol which is particulate in form at room temperature. The preferred sugar alcohol is erythritol which is a tetrahydric alcohol which occurs naturally and can also be made synthetically. Erythritol presents in fruits such as kiwi, pear, grape and melon, as well as in fruit of the cucurbitaceae family. Erythritol can also be derived from corn dextrose and other similar sources. Additional non-hydroscopic sugar alcohols and anti-caking non-nutritive agents which are suitable for use in accordance with the present invention include isomalt, lactitol, xylitol, palatinit, maltitol, mannitol, sorbitol, silicon dioxide, calcium silicate, gum, cellulose, and the like.
Erythritol is preferably used in powder form having a particle size of less than or equal to about 0.2 mm. Particle sizes larger than 0.2 mm can be difficult to mix with terpene glycoside and fructose according to the invention. Alternatively, erythritol crystals can be used as a source of erythritol. However, crystals have a particle size of between about 0.2 mm and about 0.5 mm and must be ground down to a particle size of less than or equal to about 0.2 mm.
The carrier component can be fructose obtained from any available source as would be readily known to a person of ordinary skill in the art. Fructose is a desirable carrier because its particle size, between about 0.35 mm and about 0.55 mm, is ideal for combining according to the invention, and also because of the desirable flavor characteristics. Other suitable carriers include

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-hydroscopic sweetener composition and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-hydroscopic sweetener composition and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-hydroscopic sweetener composition and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2933695

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.