Method and apparatus for controlling a workpiece in a vacuum...

Radiant energy – Irradiation of objects or material – Irradiation of semiconductor devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S398000, C250S442110

Reexamination Certificate

active

06437351

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to devices for providing individual workpieces such as silicon wafers or flat panel displays with a pre-selected orientation relative to a treatment beam.
BACKGROUND OF THE INVENTION
The manufacture of semiconductors during the front end stages includes a number of process steps whereby a silicon wafer is presented to an incoming ion beam, plasma, molecular beam, or other irradiating elements. In some cases, the irradiating element is scanned across the surface of the silicon wafer to provide a uniform spatial irradiation and the time spent determines the doping level. In others, the wafer is moved across a stationary beam of irradiating elements. High current ion implanters with purely mechanically scanned workpiece holders are examples of systems that scan the wafers through a stationary beam and provide on average uniform spatial doping. Doping uniformity is sero-controlled using the measured doping rate to vary the speed and duration of one mechanical axis while the other is controlled at a constant speed. Doping level is controlled by adjusting the number of completed scan passes in the servocontrolled direction such that the total dose is equally divisible by the number of scan passes. This technique is well known to those knowledgeable in the art and needs no further explanation.
The semiconductor industry is now migrating to 300 mm wafer diameters that cause the vacuum chambers and extent of mechanical motion to increase beyond practical limits for two direction mechanical scan systems. Furthermore, the cost of a single 300 mm wafer is currently very expensive which makes it desirable to process wafers individually rather than in batches because of the cost and wafer handling risks. Finally, the recent requirement of increasing the wafer tilt angles from the current 7 degrees to as much as 60 degrees precludes the use of mechanically scanned batch systems due to the variation in implant angle and twist across the wafer.
SUMMARY OF THE INVENTION
The present invention provides high angle tilt ion implants for silicon wafers with fast servo-controlled mechanical scanning in one direction and fast magnetic scanning in the orthogonal direction. Some of the features of this invention are:
(1) a differentially pumped integral air bearing vacuum seal for linear motion in the Y direction for the mechanical scan structure;
(2) a differentially pumped integral air bearing vacuum seal for rotary motion about the X-axis;
(3) air bearings for supporting the mechanical scan structure, centering and supporting the rotary seal, and centering and supporting the Y-scan linear seal; and
(4) synchronous gating of the ion beam during transitions between implant states.
In other words, the ion beam is held off the wafer whenever a loss of beam is detected or other requirements dictate that the system go from an implant in progress to an implant hold state. This can occur while a flag Faraday is inserted into the beam path for set-up or tuning purposes.
For purposes of describing the geometry of the system, the mechanical scanning system uses Cartesian coordinates X, Y, and Z while the magnetic scanned beam uses Cartesian coordinates X′, Y′, and Z′. In all cases X and X′ are identical. The ion beam is perpendicular to the X′Y′ plane and is magnetically scanned in the X′ direction.
In one aspect of the present invention, there are two movable bearing plates spaced from a fixed plate using gas bearings with an integral differentially pumped vacuum seal to prevent physical contact between seal surfaces on each of the plates. The combination gas bearing and vacuum seal for the outermost plate provides friction free movement in the Y direction. The combination gas bearing and vacuum seal for the inner plate provides friction free rotation about the X axis. The combination of the two moveable bearing plates provides tilting of a workpiece holder at any angle between 0 and 60 degrees for ion implanting in a silicon wafer and 90 degrees for horizontal wafer handling. This is accomplished by rotating the two moveable bearing plates about the X axis creating an angle between the Z & Z′ and Y & Y′ directions. The Z′ direction is parallel with the incoming ion beam and Z is perpendicular to the surface of the workpiece holder. The tilting of the workpiece holder allows implants into the sides of deep trenches and gate structures located on the surface of the silicon wafer, a desirable feature for state of the art semiconductor manufacture. Horizontal wafer handling is a desirable feature in that it uses gravity to hold wafers while in motion obviating the need for edge clamping on the wafer that may result in damage to the wafer. Additional gas bearings center the rotating bearing plate about the X axis as well as prevent lateral motion of the outermost bearing plate along the Z direction.
In another aspect of the present invention, the ion beam intercepts each point on the surface of the workpiece (e.g., wafer) at the same distance along the Z′ axis as the workpiece is reciprocated in the Y direction. This is accomplished using only three axes of controlled motion. If one assigns a unit vector to the wafer surface orientated with respect to the crystal lattice and another unit vector to the incoming ion beam, the relationship between these two vectors is constant as the wafer is reciprocated in front of the ion beam throughout the implantation process. Furthermore, the distance along the Z′ axis to every point on the surface of the wafer as the wafer is reciprocated through the beam is the same such that each point on the wafer surface experiences exactly the same ion flux and trajectory. Thus enabling precise control over ion channeling through the crystal lattice during implantation leading to superior control over implant uniformity throughout the volume of the implanted surface.
In another aspect of the present invention, the magnetic scanner is used to hold the ion beam in the overscan region for a short duration while an upstream Faraday is inserted or retracted to prevent fine structure (i.e., non-uniformity) in the doping level across the wafer. To avoid non-uniformity in the doping, the ion beam is sampled when it is scanned off the edge of the wafer and both the magnetic and mechanical scanning controls are stopped if beam loss is detected. The implant is started in the same way, the beam is deflected off the wafer path before the Faraday is retracted and scanning starts precisely where it was interrupted. This method is also used to temporarily interrupt the implant for any reason deemed necessary,
In another aspect of the present invention, there is provided an apparatus having a vacuum chamber having a chamber wall, a workpiece holder disposed within the vacuum chamber and extending through the chamber wall, a reciprocating member receiving the workpiece holder, and a rotating member interposed between the reciprocating member and the chamber wall.
In yet another aspect of the present invention, there is provided a method for ion implantation of a workpiece, including the steps of generating an ion beam perpendicular to a first XY plane, tilting the workpiece to a second XY plane relative to the first XY plane, scanning the ion beam across the workpiece along the X axis of the first XY plane and translating the workpiece along the Y axis of the second XY plane with all points on a face of the workpiece being equidistance from the source of the ion beam.


REFERENCES:
patent: 3778626 (1973-12-01), Robertson
patent: 4035655 (1977-07-01), Guernet et al.
patent: 4191385 (1980-03-01), Fox et al.
patent: 4228358 (1980-10-01), Ryding
patent: 4229655 (1980-10-01), Ryding
patent: 4234797 (1980-11-01), Ryding
patent: 4258266 (1981-03-01), Robinson et al.
patent: 4261762 (1981-04-01), King
patent: 4274004 (1981-06-01), Kanai
patent: 4276477 (1981-06-01), Enge
patent: 4383178 (1983-05-01), Shibata et al.
patent: 4453080 (1984-06-01), Berkowitz
patent: 4498833 (1985-02-01), Herte

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for controlling a workpiece in a vacuum... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for controlling a workpiece in a vacuum..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for controlling a workpiece in a vacuum... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2893031

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.