Slow melting coating for ice confections

Food or edible material: processes – compositions – and products – Ice coating and coated product

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S100000, C426S101000, C426S104000, C426S577000

Reexamination Certificate

active

06379724

ABSTRACT:

TECHNICAL FIELD
The present invention relates to an aqueous based coating for ice confections, methods for preparing and applying the coating, and products containing the coating.
BACKGROUND ART
The combination of aqueous materials and ice confections is well known. Early examples of the combination include the addition of topping sauces or fruits to ice confections at the time of consumption. Added convenience is achieved if the combination is accomplished before distribution of the product. If the combination product is made in a coated format then the convenience extends to the ability to eat the dessert with one hand.
One of the oldest traditional approaches to prepare aqueous based (often fruity) coated ice cream or ice cream analogue desserts is to use freezing technology to solidify both the milky and the coating portions of an ice cream or ice cream analogue dessert. One example of freezing technology is the “shell and core” process. In the “shell and core” process an aqueous based solution, such as a fruit solution, is added to a frozen mold for a particular period of time. The mold is cooled so that a layer of solution is frozen to the mold; unfrozen material is extracted from the mold and replaced by ice cream; the mold, solution, and ice cream is then further cooled to fully freeze the product; and the mold is removed. Generally, the mold is warmed to remove the product and the removed product is then re-cooled.
The “shell and core” process has a number of disadvantages. Generally, the quality of the aqueous based coating is poor. Typically, the aqueous based coating has large ice crystals which results in a hard icy texture. Furthermore, the shape of the product is limited since it is necessary that the product can be removed from the mold. Also, the quality of the ice cream is typically poor since the ice cream must have a sufficiently low viscosity in order to be able to dose the mold. Thus, an overrun of greater than 80 percent is precluded. Finally, warming the mold to remove the product and then re-cooling the product adversely effects the quality of the final product.
Another example of freezing technology is the “dip freezing” process. In the “dip freezing” process an ice cream is dipped into an aqueous based solution, such as a fruit solution, and then freezing is used to solidify the solution onto the ice cream. The freezing must be done rapidly or the solution will drain from the ice cream. Further, the solidification of the coating by freezing depends on the limited thermal conduction of the coating. This often limits the process to applying thin coatings in any single dipping operation. Therefore, in the “dip freezing” process multiple operations may be necessary to achieve a coating with the desired thickness. Furthermore, the “dip freezing” process requires the ice cream core portion to be pre-cooled prior to dipping which raises production costs.
WO 98/04149 discloses a “dip freezing” process for preparing an ice confection comprising a mass of milk containing ice confection and a discrete element of water ice. The method involves contacting a mass of milk containing ice confection with a water ice solution having a rheometry value of more than about 1.0 to cause the ice solution to adhere to the mass of milk containing ice confection and then rapidly cooling the adhered water ice solution to −15° C. or below.
EP0710074 discloses a “dip freezing” process for preparing a two component ice confection which involves (i) cooling the surface of a mass of milk containing ice confection to a temperature of below about −15° C., preferably between −40° C. and −25° C., and more preferably below −40° C.; (ii) contacting the surface with a water ice solution having a solids content between about 15% and about 50% by weight for an amount of time sufficient to allow a layer of water ice form on the surface; and (iii) subjecting the whole to a hardening step to form the water ice layer. The hardening step involves cooling the milk containing ice confection coated with the water ice solution to the temperature used in step (i) or a lower temperature.
In general, freezing technology requires rigid control over both the temperature and the freezing time to achieve the desired thickness of the coating. The freezing time is dependent on numerous properties of the components. For example, freezing time is influenced by the respective masses of the components, the respective geometry of the components, the specific heats of the components, latent heats of solidification, and thermal conductance values of the components in both liquid and solid states. Freezing time is also influenced by temperature, contact times, and specific heats or latent heats of the heat exchange media. Examples of exchange media are ammonia, nitrogen, and air. Furthermore, heat exchange is complicated by variations in respective velocities and turbulence within the heat exchange media. Thus, a problem with freezing technology is that all of the conditions must be determined for each individual product that is to be coated. A freeze coating process that works for one product will probably not work for another product. Changing the product to be coated necessitates resetting all the conditions. Furthermore, the many variables that effect the freezing temperature and the freezing time often leads to unacceptable product variability. For example, there is the problem of streaking if the solidification process occurs too slowly. Streaking is the undesirable introduction of a line, mark, smear, or band differentiated by color, texture, or topography from its surroundings. Streaking results from liquid running down the semi-frozen solid.
Another disadvantage with freeze technology is that of melting. The coated ice cream products are not normally consumed at freezing air temperatures. As such products are refreshing they are normally consumed when the temperature is warm or hot. Under these conditions solidification of the product is reversed and the adhesion of the core and coating is reversed. This leads to a further restriction in terms of product size, which must not exceed that which could be consumed before melting causes messiness of the eat.
One approach to avoid such temporal and thermal sensitivity disadvantages is the use of alginate and setting salts as described in U.S. Pat. No. 4,985,263. U.S. Pat. No. 4,985,263 discloses a method for coating a frozen confectionary product containing calcium ions by dipping the confectionary product into a flowable aqueous medium containing an alkali metal alginate to form a coating thereon and spraying the coated product with an aqueous solution of a calcium salt. It is believed that the calcium in the confectionary product reacts with the alkali metal alginate in the flowable aqueous medium to form a gel on the surface of the confectionary product, while the calcium salt in the spray reacts with the alkali metal alginate in the coating to form a gel on the outside surface of the confectionary product.
Alginate salts, however, introduce other disadvantages. Alginates are polymer chains having a high degree of mechanical inflexibility as a result of the stiff nature of the pyranoid rings that make up the alginate polymer chain and the hindered rotation around the glycosidic linkages. This causes the alginate molecule to behave as an extended coil in solution and results in solutions having high alginate concentrations having a high viscosity. A highly viscous aqueous based coating sol is undesirable since this leads to drag that results in an uneven coating. The high viscosity therefore limits the amount of alginate that can be added to an aqueous based coating sol and thus the strength of the resulting gel is limited.
Also during storage of alginate sols depolymerization occurs which leads to a changes in viscosity of the sol. This on going change in viscosity is problematic when using alginate technology. Furthermore, this change in viscosity is enhanced when the pH is below 5. The enhanced change in viscosity is a result of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Slow melting coating for ice confections does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Slow melting coating for ice confections, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Slow melting coating for ice confections will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2867182

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.