Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design
Reexamination Certificate
1999-05-26
2002-05-14
Hoang, Huan (Department: 2818)
Computer-aided design and analysis of circuits and semiconductor
Nanotechnology related integrated circuit design
C716S030000, C716S030000
Reexamination Certificate
active
06389578
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention generally relates to computer-aided circuit design systems and, more particularly, to a method and apparatus for evaluating the design quality of a network of nodes in a logic gate of an integrated circuit to determine the strongest and weakest paths from the supply and the ground of the gate to an output node of the gate.
BACKGROUND OF THE INVENTION
Integrated circuits are electrical circuits comprised of transistors, resistors, capacitors, and other components comprised on a single semiconductor “chip” in which the components are interconnected to perform a given function. Typical examples of integrated circuits include, for example, microprocessors, programmable logic devices (PLDs), electrically erasable programmable memory devices (EEPROMs), random access memory devices (RAMs), operational amplifiers and voltage regulators. A circuit designer typically designs the integrated circuit by using very large scale integrated (VLSI) circuit design techniques to create a circuit schematic which indicates the electrical components and their interconnections. Often, designs are simulated by computer to verify functionality and to ensure that performance goals are satisfied.
In the world of electrical device engineering, the design and analysis work involved in producing electronic devices is often performed using electronic computer aided design (E-CAD) tools. As will be appreciated by those skilled in the art, electronic devices include electrical analog, digital, mixed hardware, optical, electro-mechanical, and a variety of other electrical devices. The design and the subsequent simulation of any circuit board, VLSI chip, or other electrical device via E-CAD tools allows a product to be thoroughly tested and often eliminates the need for building a prototype. Thus, today's sophisticated E-CAD tools may enable the circuit manufacturer to go directly to the manufacturing stage without having to perform costly, time consuming prototyping.
In order to perform the simulation and analysis of a hardware device, E-CAD tools must deal with an electronic representation of the hardware device. A “netlist” is one common representation of a hardware device. As will be appreciated by those skilled in the art of hardware device design, a “netlist” is a detailed circuit specification used by logic synthesizers, circuit simulators and other circuit design optimization tools. A netlist typically comprises a list of circuit components and the interconnections between those components.
The two forms of a netlist are the flat netlist and the hierarchical netlist. Often, a netlist will contain a number of circuit “modules” which are used repetitively throughout the larger circuit. A flat netlist will contain multiple copies of the circuit modules essentially containing no boundary differentiation between the circuit modules and other components in the device. By way of analogy, one graphical representation of a flat netlist is simply the complete schematic of the circuit device.
In contrast, a hierarchical netlist will only maintain one copy of a circuit module which may be used in multiple locations. By way of analogy, one graphical representation of a hierarchical netlist would show the basic and/or non-repetitive devices in schematic form and the more complex and/or repetitive circuit modules would be represented by “black boxes.” As will be appreciated by those skilled in the art, a black box is a system or component whose inputs, outputs, and general function are known, but whose contents are not shown. These “black box” representations, hereinafter called “modules”, will mask the complexities therein, typically showing only input/output ports.
An integrated circuit design can be represented at different levels of abstraction, such as the Register-Transfer level (RTL) and the logic level, using a hardware description language (HDL). VHDL and Verilog are examples of HDL languages. At any abstraction level, an integrated circuit design is specified using behavioral or structural descriptions, or a mix of both. At the logical level, the behavioral description is specified using boolean equations. The structural description is represented as a netlist of primitive cells. Examples of primitive cells are full-adders, NAND gates, latches, and D-Flip Flops.
Having set forth some very basic information regarding the representation of integrated circuits and other circuit schematics through netlists, systems are presently known that use the information provided in netlists to evaluate circuit timing and other related parameters. More specifically, systems are known that perform a timing analysis of circuits using netlist files. Although the operational specifics may vary from system to system, generally such systems identify certain critical timing paths, and then evaluate the circuit to determine whether timing violations may occur through the critical paths. As is known, timing specifications may be provided to such systems by way of a configuration file.
One such system known in the prior art is marketed under the name PathMill, by EPIC Design Technology, Inc., subsequently purchased by Synopsis, Inc. PathMill is a transistor-based analysis tool used to find critical paths and to verify timing in semiconductor designs. Using static and mixed-level timing analysis, PathMill processes transistors, gates, and timing models. It also calculates timing delays, performs path searches, and checks timing requirements. As is known, PathMill can analyze combinational designs containing gates, and sequential designs containing gates, latches, flip-flops, and clocks. Combinational designs are generally measured through the longest and shortest paths.
While tools such as these are useful for the design verification process after layout, there are various shortcomings in the PathMill product and other similar products. One primary shortcoming of the PathMill program is that it does not analyze the circuits to determine the design quality of the circuits. Rather, PathMill performs a static timing analysis of a circuit using the netlist provided to PathMill. Furthermore, configuring PathMill to recognize various circuit characteristics is typically a very difficult task.
Accordingly, a need exists for a rules checking system that will allow circuits to be evaluated for design quality. The present invention works in conjunction with a tool, such as, for example, PathMill, to build a database which is then utilized by the rules checking system of the present invention to evaluate the design quality of network nodes. Typically, such tools, including PathMill, receive a netlist and use the netlist to determine FET (field effect transistor) direction, node types, latches, dynamic gates, rise and fall times, etc. This information is utilized by the present invention to determine the strongest and weakest paths from a supply of a gate to an output node of the gate and from the ground of the gate to the output node of the gate. Once the strongest and weakest paths from the supply and from ground to the output node have been determined, this information can be used to determine various design characteristics of the gate, such as, for example, the noise susceptibility of the gate.
SUMMARY OF THE INVENTION
The present invention provides a method and apparatus for determining the strongest and weakest paths from a supply of a gate comprised in an integrated circuit to an output node of the gate and from ground to the output node of the gate. The apparatus comprises a computer capable of being configured to execute a rules checker program. When the rules checker program is executed by the computer, it analyzes information relating to the network and determines the strongest and weakest paths from the supply to the output node of the gate and from ground to the output node of the gate.
In accordance with the preferred embodiment of the present invention, the rules, checker program calculates the effective widths of the PFET and NFET networks in the gate being evaluated and
Hewlett--Packard Company
Hoang Huan
LandOfFree
Method and apparatus for determining the strengths and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for determining the strengths and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for determining the strengths and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2857563