Method and apparatus for providing interchassis...

Electrical computers and digital data processing systems: input/ – Intrasystem connection – Bus access regulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S315000

Reexamination Certificate

active

06363449

ABSTRACT:

The present invention relates to data communications and particularly to data communication between components in a computer chassis across a network.
BACKGROUND AND SUMMARY OF THE INVENTION
Presently, there are different types of data transmission systems employing existing cabled networks, or board level component traces specifically installed for that purpose. Such systems allow the automatic control and monitoring, at a distance, of components connected to the network.
These known systems generally allow a network or hardware administrator to respond to exigencies in the matter of monitoring and control of a network and its nodes. However, they exhibit a complex structure employing several individual control and monitoring modules managed by a single or several collective control modules, themselves possibly managed by a central module.
Background: Compatibility
Over the years, communications technology has developed for the computer industry into what is now extensive sophistication in hardware and software systems for facilitating various types of communications. Nevertheless, extensive sophistication and advancements in many hardware and software systems can be thwarted from market or commercial applicability for many reasons. For example, if a new communications system is not compatible with an existing system, many users will not purchase the new system. Attempts for a single manufacturer to become the system to which all others must be compatible can be quite difficult to achieve and, even if successful, cost the manufacturer a great deal of investment capital. Attempts for different manufacturers to interface with each other often creates complex and expensive systems which can confuse system purchasers and installers alike, and can often making the problems worse. Also, manufacturers of systems are reluctant to develop or introduce new systems to the market when compatibility and user confusion are such big issues. Accordingly, compatibility with other existing or even future systems has been emphasized in various industries. Industry standards to accomplish compatibility goals of the data communication systems have resulted.
Despite the advancements of compatibility which result when particular industries adopt standards, another problem arises when an industry desires to change or make a transition to new standards. These new standards, for example can often provide higher speed capabilities or other significant improvements over previous standards. The new standards, however, often are not adopted because the new standard is not compatible with the existing standard. In other words, the market will not accept or is reluctant to accept, the new standard because it may require replacement of all existing systems with which the user wants to communicate. This can cause technology stagnation and inhibit rapid advancement of technology.
Background: Home Automation Standards
Home automation systems have long used special techniques for local communication over power mains. This was originally necessitated by the absence of any other type of bus over which “smart” devices could “talk” to each other. However, communication over power mains also introduces very specific problems, including those of line noise received from motors and other devices attached to the power mains, the need to ensure that the data itself does not interfere with other devices connected to the mains, and limited bandwidth. For similar reasons, low-bandwidth power-mains communications have also been used for limited data communications between smart devices and local electric utility control systems.
One example of an industry standard for building or home automation data communication systems has been the X10 or X-10 communications protocol for remote control of electrical devices which communicate across standard wiring or power lines of a building such as a home. (In general, methods of ensuring the accuracy of transmitted and received data are known as communications protocols.) The X10 communications protocol allows various home electronic devices, such as lighting controllers or switches, status indicators, security systems, telephone interfaces, computer interfaces, and various home appliances, to readily be linked together for simple control applications. The X10 communications protocol generally has a narrow bandwidth, i.e., 120 KiloHertz (“KHz”), for communicating data at a relatively slow speed, i.e., 60 bits/second.
Another industry standard for home automation has been the Consumer Electronic Bus (“CEBus”) standard, which describes a local communications and control network designed specifically for the home. Like X10, the CEBus standard provides a standardized communication facility for exchange of control information and data among various devices and services in the home, such as lighting controllers or switches, status indicators, security systems, telephone interfaces, computer interfaces, stereo systems, and home appliances. The CEBus standard was developed by the Consumer Electronics. Group of the Electronic Industries Association (“EIA”) and an inter-industry committee of representatives from both EIA and non-member companies. The CEBus standard generally has a wide bandwidth, e.g. 100-400 KHz, for communicating data at a relatively fast speed, i.e., 10 Kilobits/second and is significantly faster and more reliable than the X10 communications protocol. The CEBus standard also allows full networking of consumer application devices. The CEBus standard encompasses both the physical media (wires, fiber, etc.) and the protocol (software) used to create an intelligent home or office.
The newest standard for home automation is the EIA-600 standard, which is intended to handle existing and anticipated control communication requirements at minimum practical costs consistent with a broad spectrum of residential applications. It is intended for such functions as remote control, status indication, remote instrumentation, energy management, security systems, entertainment device coordination, etc. These situations require economical connection to a shared local communication network carrying relatively short digital messages.
Background: Platform Management
Presently, there are different types of data transmission systems which allow computer network components to be automatically controlled and monitored at a distance. These known systems are generally connected by a dedicated network, and consist of individual control and monitoring modules at each node, which are in turn managed by a central system.
The Intelligent Platform Management Interface (or “IPMI”) specification was announced by Intel, Dell, Hewlett-Packard Company, and NEC to provide a standard interface to hardware used for monitoring a server's physical characteristics, such as temperature, voltage, fans, power supplies and chassis.
The IPMI specification defines a common interface and message-based protocol for accessing platform management hardware. IPMI is comprised of three specifications: Intelligent Platform Management Interface, Intelligent Platform Management Bus (IPMB) and Intelligent Chassis Management Bus (ICMB). The IPMI specification defines the interface to platform management hardware, the IPMB specification defines the internal Intelligent Platform Management Bus, and the ICMB specification defines the external Intelligent Chassis Management Bus, an external bus for connecting additional IPMI-enabled systems.
IPMI provides access to platform management information. IPMI-enabled servers monitor and store platform management information in a common format which can be easily accessed by server management software, add-in devices or even directly from other servers.
A management bus, IPMB, allows add-in devices such as Emergency Management Cards to access platform management information, even if the processor is down. The IPMB can also be extended externally to the chassis (ICMB) to enable “system-to-system” monitoring. This allows a server to manage another ICMB-connected server even if it has no system ma

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for providing interchassis... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for providing interchassis..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for providing interchassis... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2832222

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.