Method of demounting silicon wafers after polishing

Abrading – Abrading process – Glass or stone abrading

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S065000, C134S902000, C134S003000

Reexamination Certificate

active

06416391

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to the field of manufacturing silicon wafers in the microelectronics industry. More particularly, it relates to a method of improving the surface quality of silicon wafers during the demounting step of a chemical-mechanical polishing process.
BACKGROUND OF THE INVENTION
One of the final steps in producing a silicon wafer for use in semiconductor devices is the Chemical-Mechanical (CM) polishing process. Conventionally, several different machines have been used in the polishing process: a mounting machine for mounting wafers to a polishing plate; a polishing machine for pushing the polishing plate against a polishing pad; and a demounting machine for removing the wafers from the polishing plate. Both the wafers and the polishing plates are then sent to be cleaned.
Recently, advances have been made in the CM polishing machines that have incorporated all of these machines into one, with the exception of cleaning the wafers. After the wafers are removed from the polishing plate, they are placed in a cassette which is submersed in pure water until the cassette is full, at which time it is transferred to a cleaning machine. An example of such an advancement is described in U.S. Pat. No. 5,908,347.
During the actual polishing process, a polishing slurry is supplied to the polishing machine and polishing pad to provide an abrasive. Typically, the polishing slurry contains colloidal silicon dioxide as the abrasive, but other substances such as metal oxides (such as Al
2
O
3
) can also be used. After the polishing process, the wafers are sprayed with de-ionized (DI) water to keep the wafers wet and prevent staining of the wafers. The wafers then need to be individually removed from the polishing plate. As such, the polishing plate, with the wafers adhered thereon, is transferred to a demount station. The station then inclines the polishing plate, and positions the first wafer to be demounted in a position such that a water jet at an oblique angle to the wafer can separate the wafer from the polishing plate. The wafer then passes through a quick DI water rinse, and is placed in a cassette that submerged in DI water in a demount holding tank. The demount station then positions the polishing plate to remove the next wafer.
As a wafer is removed from the polishing plate, the water jet moves the wafer through a water rinse to remove the residual slurry from the surface of the wafer. This rinse, however, is much like a waterfall, and the wafer passes through this water very quickly. It then moves to the demount holding tank.
As soon as the wafer gets into the demount holding tank, it immediately begins growing an oxide layer on the surface of the wafer using the reaction
Si+2H
2
O→SiO
2
+2H
2
However, copper ions in the DI water also begin to precipitate at exposed silicon sites as copper metal with the Reduction/Oxidation equations
2Cu
+2
+4e

→2 Cu
Si+2H
2
O→SiO
2

+4H
+
+4e

2Cu
+2
+Si+2H
2
O→SiO
2

+2Cu+4H
+
with the oxide layer butting up against the copper precipitate. When the cassette in the demount holding tank is full, the cassette full of wafers is transferred to a cleanline that proceeds to clean the wafers surface. A typical cleaning process uses a combination of SC 1 (a mixture of ammonium hydroxide, hydrogen peroxide, and water) and/or SC2 (Hydrochloric acid, hydrogen peroxide and water) in water. One skilled in the art can readily find much literature regarding cleaning of wafers after polishing. During such a cleaning, the copper precipitate dissolves in the cleaning process, but where the copper precipitate was located, a small pit is etched into the surface of the wafer.
When the wafer is then inspected for particles the etch pits show up on the surface of the wafer as Light Point Defects (LPDs). LPDs, whether from etch pits or from particles, negatively impact the surface quality of the wafer during IC fabrication, and are therefore undesirable to have. Much effort and expense has been expended trying to improve water quality and remove as much contamination as possible, with reasonable results. Unfortunately, there is significant cost associated with continued improvement to water quality, both in preparation and in delivery of such water. As such, there is a need for a method of eliminating etch pits caused from copper precipitation on silicon wafers during the que time from polishing demount to cleaning that does not require significant improvements in water quality.
SUMMARY OF THE INVENTION
The present invention has been accomplished in view of the above-mentioned problems, and it is an object of the present invention to provide an environment for preventing copper to precipitate on the surface of polished wafers while in que to be cleaned using any standard post-polishing cleaning process.
DETAILED DESCRIPTION OF THE INVENTION
The present invention calls for adding a solution of hydroflouric (HF) acid in the water of the demount holding tank. The reduction/oxidation equations for a silicon wafer in an HF solution is
2Cu
+2
+4e

→2Cu
Si+6F

→SiF
6
−2
+4e

2Cu
+2
+Si+6F

→SiF
6

+2Cu
with no silicon dioxide growth whatsoever. This reduction/oxidation reaction occurs much slower than the previously described equation when no HF acid is present, and thereby significantly slows the copper precipitation process.
Further, the stronger the concentration of HF in solution, the slower the copper precipitation process occurs, up to the point of prohibiting growth of the precipitation. However, high concentrations of HF in solution will etch the surface of the wafer, thereby removing the polished surface just provided, making the surface relatively rough, and degrading the flatness of the wafer.
It has been found that putting a solution of between 0.5% and 10% by volume of) in pure filtered water will inhibit the precipitation of copper, without negatively effecting the surface roughness or flatness of the wafer. Most preferably, the concentration by volume is approximately 6%. By using such a low percent of HF, the wafers can also stay submerged in the solution for extended periods of time without experiencing undo etching, yet still providing adequate protection against metal precipitation on the surface of the wafer. The above-described mechanism specifically discusses precipitation of copper, but the process of the present invention will help prevent precipitation of other metal in found in water as well.


REFERENCES:
patent: 4050954 (1977-09-01), Basi
patent: 4466852 (1984-08-01), Beltz et al.
patent: 4874463 (1989-10-01), Koze et al.
patent: 4973563 (1990-11-01), Prigge et al.
patent: 5219613 (1993-06-01), Fabry et al.
patent: 5389194 (1995-02-01), Rostoker et al.
patent: 5609719 (1997-03-01), Hempel
patent: 5645737 (1997-07-01), Robinson et al.
patent: 5656097 (1997-08-01), Olesen et al.
patent: 5759971 (1998-06-01), Manako
patent: 5779520 (1998-07-01), Hayakawa
patent: 5789360 (1998-08-01), Jae-inh Song et al.
patent: 5908347 (1999-06-01), Nakajima et al.
patent: 5943549 (1999-08-01), Motoura et al.
patent: 6147002 (2000-11-01), Kneer
patent: 6187684 (2001-02-01), Farber et al.
Reddy et al., Defect States at Silicon Surface; PHYSICA B, pp. 468-472.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of demounting silicon wafers after polishing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of demounting silicon wafers after polishing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of demounting silicon wafers after polishing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2824996

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.