Human power amplifier for vertical maneuvers

Implements or apparatus for applying pushing or pulling force – Apparatus for hauling or hoisting load – including driven... – Device includes rotatably driven – cable contacting drum

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C254S266000, C212S285000, C414S005000

Reexamination Certificate

active

06299139

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to material handling devices and, more specifically, to a material handling device that amplifies the force a human exerts when the human lifts or lowers an object in the vertical direction.
BACKGROUND OF THE INVENTION
Several types of material handing devices are known. One type of material handling device, known as a balancer, consists of a motorized take-up pulley, a rope which wraps around the pulley when the pulley turns, and an end-effector which is attached to the end of the rope. The end-effector has components that connect to the load being lifted. The rotation of the pulley winds or unwinds the rope and causes the end-effector to lift or lower the load. In this class of material handling system, an upward force in the rope exactly equal to the gravity force of the object being lifted is generated by an actuator; the rope tension is equal to the weight of the object. Therefore, the only force the operator must impose to maneuver the object is the force necessary to overcome the object's inertia. This force can be substantial if the mass of the object is large. Therefore, the ability to accelerate or decelerate a heavy object is limited by the operator's strength.
There are two ways of creating a force in the rope so that it is exactly equal to the object weight. First, if the system is pneumatically powered, the air pressure is adjusted so that the lift force equals the weight of the load. Second, if the system is electrically powered, the correct voltage or current (depending on the control circuitry) is provided to an amplifier to generate a lift force that equals the load weight. These types of systems are not suited to maneuvers in which objects of varied weights are lifted. This is true because each object requires a different bias force to cancel its weight force. This annoying adjustment can be done either manually by the operator or electronically by measuring the object weight.
For example, the BA Series of balancers made by Zimmerman International Corporation work based on the above principle. The air pressure is set and controlled by a valve to maintain a constant load balance. The operator has to manually reach the actuator and set the system to a particular pressure to generate a constant tensile force on the rope.
The LIFTRONIC System machines made by Scaglia of Italy also belong to the family of balancers, but they are electrically powered. As soon as the system grips the load, the LIFTRONIC machine creates an upward force in the rope which is equal and opposite to the weight of the object being held. These machines may be considered superior to the Zimmerman BA Series balancers because they have an electronic circuit that balances the load during the initial few moments when the load is grabbed by the system. As a result, the operator does not have to reach the actuator on top and adjust the initial force in the rope. In this system, the load weight is measured first by a force sensor in the system. While this measurement is being performed, the operator should not touch the load, but instead should allow the system to find the object's weight. If the operator does touch the object, the force reading will not be correct. The LIFTRONIC machine then creates an upward force in the rope which is equal and opposite to the weight of the object being held.
Balancers of the kind described above do not give the operator a sense of the force required to lift the load. Also, only the weight of the object is canceled by the rope's tension. Moreover, such balancers are generally not versatile enough to be used in situations in which load weights vary.
Another class of machines is similar in architecture to the machines described above, but the operator uses an intermediary device such as a valve, pushbutton, keyboard, switch, or teach pendent to adjust the lifting and lowering speed of the object being maneuvered. For example, the more the operator opens the valve, the greater the speed generated to lift the object. With an intermediary device, the operator is not in physical contact with the load being lifted, but is busy operating a valve or switch. The operator does not have any sense of how much he/she is lifting because his hand is not in contact with the object. Although suitable for lifting objects of various weights, this type of system is not comfortable for the operator because the operator must focus on an intermediary device (i.e valve, pushbutton, keyboard, or switch). Thus, the operator pays more attention to operating the intermediary device than to the speed of the object. This makes the lifting operation rather unnatural.
SUMMARY OF THE INVENTION
All of the foregoing deficiencies are overcome in a human power amplifier according to this invention.
The human power amplifier includes an end-effector to be held by a human operator; an actuator such as an electric or air-powered or hydraulic motor; a computer or other type of controller for controlling the actuator; and a rope, cable, wire or other type of line for transmitting a tensile lifting force between the actuator and the end-effector. The end-effector provides an interface between the human operator and an object which is to be lifted. A force transfer mechanism such as a pulley, drum or winch is used to apply the force generated by the actuator to the rope or other line which transmits the lifting force to the end-effector. (Note that the word “lifting” herein refers to both lifting and lowering motions.)
The end-effector includes a human interface subsystem and a load interface subsystem. The load interface subsystem in configured so as to grip or otherwise attach to the load and may include, for example, a suction cup, a magnet, or a mechanical member shaped to conform to a surface of the load. The human interface subsystem includes a force sensor which is mounted so as to measure the vertical force imposed on the end-effector by the human operator. A wide variety of force sensors may be used, including strain gauges, load cells, and piezoelectric devices. The vertical force on the end-effector may also be detected by measuring the displacement of a resilient element such as a spring.
A signal representing the vertical force imposed on the end-effector by the human operator, as measured by the force sensor, is transmitted to the controller which is associated with the actuator. The controller causes the actuator to rotate the pulley and move the end-effector appropriately so always only a pre-programmed small proportion of the load force is lifted by the human operator, and the remaining force is provided by the actuator. Therefore, the actuator adds effort to the lifting task only in response to the operator's hand force. With this load sharing concept the operator has the sense that he or she is lifting the load, but with far less force than would ordinarily be required. The force applied by the actuator takes into account both the gravitational and inertial forces that are necessary to move the load. Since the force applied by the actuator is automatically determined by the force applied to the end-effector by the operator, there is no need to set or adjust the human power amplifier for loads having different weights.
There is no switch, valve, keyboard, teach pendent, or pushbutton in the human power amplifier to control the lifting speed of the load. Rather, the contact force between the human hand and the end-effector is used to control the lifting speed of the load. The human hand force is measured, and these measurements are used by the controller to calculate the required angular speed of the pulley to either raise or lower the rope so as to create sufficient mechanical strength to assist the operator in the lifting task. In this way, the device follows the human arm motions in a “natural” way. When the human uses this device to manipulate a load, a well-defined small portion of the total force (gravity plus acceleration) is lifted by the human. This force gives the operator a sense of how much weight he

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human power amplifier for vertical maneuvers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human power amplifier for vertical maneuvers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human power amplifier for vertical maneuvers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2575357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.