Precision wide band gap semiconductor etching

Semiconductor device manufacturing: process – Chemical etching – Liquid phase etching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06245687

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to etching methods and more particularly, to a method for etching Gallium Nitride (GaN) materials to produce GaN semiconductor devices.
Gallium Nitride (GaN) is a wide band gap material which possesses desirable properties for wide band gap semiconductor devices including high breakdown voltage and current handling capability. When implemented in a high power amplifier, the high breakdown voltage property of the GaN material translates into a higher power, higher efficiency amplifier when compared to similar frequency, same device periphery Gallium Arsenide (GaAs) amplifiers. The high GaN power density means that the equivalent frequency, same topology, GaN amplifier will occupy a reduced material area, approximately 100 times smaller, than the equivalent frequency GaAs amplifier. Thus, significant performance improvements can be realized from GaN devices. However, to realize the improvement from GaN devices, the device must be finely dimensioned and precisely etched. This has proven to be difficult using standard dry and wet chemical etching techniques.
Dry etching techniques have proven to be inadequate for etching GaN material since these techniques irreparably damage the GaN surface. Although high ion density plasmas have shown reduced damage when compared to lower ion density plasmas, these low damage dry etches are still highly damaged when compared to a wet chemically etched GaN surface.
Wet chemical etching provides better results than dry chemical etching for GaN material but still lacks the control necessary to precisely etch the GaN material. The current wet chemical etch technique consists of immersing the material in an etching solution and illuminating the material with ultraviolet (UV) light. The UV light induces a reaction in the material which causes atoms of the material to change from a solid phase to a liquid phase and dissolve in the etching solution thereby etching the material. This technique does not provide sufficient control to precision etch a GaN material as the primary control element is the intensity of the light and the material quality of the GaN material.
The shortfall in the prior art wet etching technique is extremely evident when it is used to etch a GaN heterojunction bipolar transistor (HBT). In etching an HBT, it is very important to etch the material in a manner which will minimize the roughness of the etched surfaces. The roughness of the etched surface is related to the diffusion of ions from the surface of the material. With the prior art wet etching method, the roughness of the etched surfaces is dependent on the uniformity of the light, the concentration of the etching solution at any point, and the quality of the material to be etched. A non-uniform illumination of the material will result in a rough surface. In addition, poor quality or defected material will result in electron hole pairs recombining at the places of the defects and etching will occur around the defects leaving intact the undesirable defect. This is particularly a problem for GaN materials since typical GaN materials contain a substantial number of impurities and defects.
In addition to providing a smooth surface after etching, to form an HBT having an emitter/base/collector from n-p-n GaN material, it is very important to etch away the entire preselected portion of the emitter material and stop the etching process almost exactly at the surface of the base material so that a contact can be placed directly on the base. If too much of the emitter material remains over the base, the contact will not allow for conduction in the base layer. And, if too much of the surface of the base material is removed, the electrical properties of the HBT will be degraded. The present wet etching technique depends on the intensity of the light to control the etch depth which does not provide sufficient control to stop the etching at an exact point. Therefore, when applied to n-p-n GaN material, the prior art wet etching method typically over etches or under etches the material resulting in a poor performing HBT.
What is needed therefore is a method for precision etching of GaN material which provides for improved surface smoothness and is operable to selectively etch n-p-n GaN material to produce GaN HBT's.
SUMMARY OF THE INVENTION
The preceding and other shortcomings of the prior art are addressed and overcome by the present invention which provides a method for etching GaN material. The method comprises configuring the GaN material as an anode in an electrochemical cell where an electrochemical cell is comprised of an anode, a cathode and an electrolyte held together in a container. The cell is configured to induce etching of the GaN material. In a first aspect, a bias is applied across the anode and the cathode to a level which is greater than the standard electrochemical cell potential of the cell to induce etching of the material. The level of the bias can be adjusted to selectively control the etch rate.
In a second aspect, the etching process is assisted by illuminating the material with an ultraviolet light while the bias is being applied.
In a third aspect, the present invention provides a method for producing a GaN heterojunction bipolar transistor (HBT) from an n-p-n GaN material having a p-GaN layer sandwiched between first and second n-GaN layers. The method comprises masking portions of the first n-GaN layer leaving unmasked a portion of the first n-GaN layer. The GaN material is configured as an anode in an electrochemical cell, where the electrochemical cell comprises an anode, a cathode and an electrolyte. A bias is applied across the anode and cathode to a first level sufficient to etch away the unmasked portions of the first n-GaN layer.
A preselected portion of the p-GaN layer is then masked leaving unmasked a preselected portion of the p-GaN layer to be etched. A second bias is applied across the anode and the cathode to a second level which is sufficient to etch away the unmasked portion of the p-GaN layer. Contacts are attached to the surfaces of the p-GaN layer and the n-GaN layers and voltages and currents are applied to the contacts to form the HBT.
In a fourth aspect, the etch rate and etch selectivity between n-GaN and p-GaN is controlled by selectively setting the level of the bias; and, in a fifth aspect, the material is illuminated with UV light while the biases are applied to assist in the etching of the material.


REFERENCES:
patent: 5690807 (1997-11-01), Clark, Jr et al.
patent: 5773369 (1998-06-01), Hu et al.
patent: 5932896 (1999-08-01), Sugiura et al.
patent: 5985687 (1999-11-01), Bowers et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Precision wide band gap semiconductor etching does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Precision wide band gap semiconductor etching, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Precision wide band gap semiconductor etching will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2462938

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.