Zinc oxide diodes for optical interconnections

Optical waveguides – Integrated optical circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S031000, C438S046000, C257S081000

Reexamination Certificate

active

07983516

ABSTRACT:
The present disclosure includes methods, devices, and systems for zinc oxide diodes for optical interconnections. One system includes a ZnO emitter confined within a circular geometry in an oxide layer on a silicon substrate. An optical waveguide is formed in the oxide layer and has an input coupled to the ZnO emitter. A detector is coupled to an output of the optical waveguide.

REFERENCES:
patent: 4701008 (1987-10-01), Richard et al.
patent: 6144779 (2000-11-01), Binkley et al.
patent: 6150188 (2000-11-01), Geusic et al.
patent: 6723577 (2004-04-01), Geusic et al.
patent: 6829421 (2004-12-01), Forbes et al.
patent: 6950585 (2005-09-01), Forbes et al.
patent: 7033435 (2006-04-01), White et al.
patent: 7132691 (2006-11-01), Tanabe et al.
patent: 7194176 (2007-03-01), Takahashi et al.
patent: 7233710 (2007-06-01), Wang et al.
patent: 7529460 (2009-05-01), Forbes et al.
patent: 7606448 (2009-10-01), Forbes et al.
patent: 2003/0015719 (2003-01-01), Haga
patent: 2005/0247954 (2005-11-01), Niki et al.
patent: 2006/0233969 (2006-10-01), White et al.
patent: 2008/0226219 (2008-09-01), Forbes et al.
patent: 2009/0189154 (2009-07-01), Lu et al.
patent: 0617314 (1994-09-01), None
patent: 1054082 (2000-11-01), None
patent: 63249383 (1988-10-01), None
patent: 2001072498 (2001-03-01), None
patent: 2005333146 (2005-12-01), None
patent: WO 00/08691 (2000-02-01), None
patent: WO 00/45443 (2000-08-01), None
patent: WO 2004/106999 (2004-12-01), None
Adachi, Chihaya,et al. “Molecular design of hole transport materials for obtaining high durability in organic . . . ”. Appl. Phys. Lett. vol. 66, No. 20, (1995), 2679-2681.
Ataev,B.M., et al. “Synthesis of epitaxial layers of zinc oxide on nonorienting substrates”. Technical Physics, vol. 44, No. 11 (1999), 1391-1393.
Bhattacharya, P., et al. “Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films”. App. Phys. Lett., vol. 83, No. 10 (2003), 2010-2012.
Bundesmann, C., et al. “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li”. App. Phys. Lett. vol. 83, No. 10 (2003), 1974-1976.
Cao, H., et al. “Random Laser Action in Semiconductor Powder”. Physical Review Letters, vol. 82, No. 11 (1999), 2278- 2281.
Cheng, X.M., et al. Magnetic properties of epitaxial Mn-doped ZnO thin films. Journal of App. Phys. vol. 93, No. 10 (2003), 7876-7878.
Coutal, C., et al. “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation”. Thin Solid Films, vol. 288 (1996), 248-253.
Endo, Kazuhiko, et al. “Metal organic atomic layer deposition of a high-k gate dielectrics using plasma oxidation”. Jpn. Journal of App. Phys. vol. 42 (2003), 685-687.
Gustafsson, G., et al. “Flexible light-emitting diodes made from soluble conducting polymers”. Nature, vol. 357 (1992), 477-479.
Hamberg, I., et al. “Evaporated Sn-doped In2O3 films: Basic optical properties and applications . . . ”. Journal of App. Phys, vol. 60, No. 11 (1986), 123-159.
Han, Jiaping, et al. “Varistor behaviour of Mn-doped ZnO ceramics”. Journal of the European Ceramic Society, vol. 22 (2002), 1653-1660.
Hatanpaa, Timo, et al. “Properties of [Mg2(thd)4] as a Precursor for Atomic Layer Deposition of MgO Thin Films and Crystal . . . ”. Chem. Mater., vol. 11 (1999), 1846-1852.
He, Yi, et al. “High-efficiency organic polymer light-emitting heterostructure devices on flexible plastic substrates”. App. Phys. Lett., vol. 76, No. 6 (2000), 661-663.
Hirose, Y., et al. “Chemistry, diffusion and electronic properties of a metal/organic semiconductor . . . ”. Appl. Phys. Lett., vol. 68, No. 2 (1996), 217-219.
Huang, R., et al. “The surface morphology of atomic layer deposited magnesia”. Journal of Materials Science Letters, vol. 12 (1993), 1444-1446.
Ishibashi, S., et al. “Low resistivity indium-tin oxide transparent conductive films. II. Effect of sputtering . . . ”. J. Vac. Sci. Technol., vol. 8 No. 3 (1990), 1403-1406.
Ishii, Hiroyuki, et al. “Growth and electrical properties of atomic-layer deposited ZrO2/Si-nitride . . . ”. Journal of App. Phys., vol. 95, No. 2 (2004), 536-542.
Jeong, Sang-Hun, et al. “Photoluminescence dependence of ZnO films on Si (100) by radio-frequency . . . ”. App. Phys. Lett. vol. 82, No. 16 (2003), 2625-2627.
Jonsson, A.K. et al. “Dielectric Permittivity and Intercalation Parameters of Li Ion Intercalated Atomic . . . ”. Journal of the Electrochemical Society, vol. 151 (2004), 54-58.
Kim, H., et al. “Anode material based on Zr-doped ZnO thin films for organic light-emitting diodes”. App. Phys. Lett. vol. 83, No. 18 (2003), 3809-3811.
Kim, H., et al. “Indium tin oxide thin films for organic light-emitting devices”. App. Phys. Lett. vol. 74, No. 23 (1999), 3444-3446.
Kim, T.S., et al. “Splitting of the Valence Band for Polycrystalline ZnO”. Journal of the Korean Physical Society, vol. 38, No. 1 (2001), 42-46.
Ko, H.J., et al. “Photoluminescence properties of ZnO epilayers grown on CaF2 (111) by plama assisted . . . ”. App. Phys. Lett., vol. 76, No. 14 (2000), 1905-1907.
Kukli, Kaupo, et al. “Low-Temperature Deposition of Zirconium Oxide-Based Nanocrystalline . . . ”. Chem. Vap. Deposition, vol. 6, No. 6 (2000), 297-302.
Liu, Z.F., et al. “Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition”. Journal of Crystal Growth, vol. 259 (2003), 130-136.
Look, D.C. “Recent advances in ZnO materials and devices”. Materials Science and Engineering, vol. 80 (2001), 383-387.
Lu, Y.F., et al. “The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition”. Journal of App. Phys., vol. 88, No. 1 (2000), 498-502.
Lv, Maoshui, et al. “Transparent conducting zirconium-doped zinc oxide films prepared by rf magnetron sputtering”. Applied Surface Science, vol. 252, (2005), 2006-2011.
Makino, T., et al. “Exiton spectra of ZnO epitaxial layers on lattice-matched substrates grown with laser-molecular . . . ”. App. Phys. Lett., vol. 76, No. 24 (2000), 3549-3551.
Minemoto, Takashi, et al. “Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering”. Thin Solid Films, vol. 372 (2000), 173-176.
NCSR Web Author. “Zinc Oxide” http://www.onr.navy.mil/sci—tech/31/312
csr/materials/zno.asp, (2006) (6 pgs.).
Ohomoto, A., et al. “MgxZn1-xO as a II-IV widegap semiconductor alloy”. App. Phys. Lett. vol. 72, No. 19, 2466-2468.
Pearton, S.J., et al. “Recent advances in processing of ZnO”. J. Vac. Sci. Technol. vol. 22, No. 3 (2004), 932-948.
Putkonen, Matti, et al. “Enhanced growth rate in atomic layer epitaxy deposition of magnesium oxide thin films”. J. Mater. Chem., vol. 10 (2000), 1857-1861.
Putkonen, Matti, et al. “Surface-controlled growth of magnesium oxide thin films by atomic layer epitaxy”. J. Mater. Chem., vol. 9 (1999), 2449-2452.
Quadri, S.B., et al. “Electron Beam deposition of ZrO2-ZnO films”. Thin Solid Films, vol. 290-291 (1996), 80-83.
Quadri, S.B., et al. “Transparent conducting films of . . . ”. Thin Solid Films, vol. 377-378 (2000), 750-754.
Rajagopal, A., et al. “Photoemission spectroscopy investigation of magnesium-Alq3 interfaces”. Journal of App. Phys., vol. 84, No. 1 (1998), 355-358.
Ryu, Y. R., et al. “Optical and structural properties of . . . ”. Journal of Applied Physics, vol. 88, No. 1 (2000), 201-204.
Ryu, Yungryel, et al. “ZnO-based LEDs begin to show full-color potential”. Compound Semiconductor, http://compoundsemiconductor.net/articles/magazine/12/8/3/1 (4 pgs.).
Sang, Baosheng, et al. “Growth of transparent conductive oxide ZnO Films by Atomic Layer Deposition”. Jpn. J. App. Phys., vol. 35, (1996), 602-605.
Sanon, Geeta, et

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Zinc oxide diodes for optical interconnections does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Zinc oxide diodes for optical interconnections, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Zinc oxide diodes for optical interconnections will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2655729

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.