Worm magnetic storage device

Electrical computers and digital processing systems: memory – Storage accessing and control – Hierarchical memories

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06185661

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to data storage devices and more particularly to a method for enabling read-write storage media to operate with a write once, read many times characteristic.
2. Description of Related Art
Generally a data processing system operates with a host processor including a main memory and a secondary memory comprising one or more magnetic disk storage devices. The magnetic disk storage devices all have a read/write capability. That is, each storage location in the magnetic disk storage device can be altered many times.
There are some applications in which it is necessary or highly advantageous to provide a permanent, non-alterable version of a file. By non-alterable it is meant that the data in the file can not be altered without leaving some sort of audit trail concerning that change. For example, insurance policies, while being written, are subject to change while they are being negotiated or compiled; once the insurance policy is issued, both the insurance company and policy holder want to be sure any change to that policy is detected. Similar requirements for permanence exist for medical records and images.
Given the ease with which data of this type can be altered on conventional magnetic storage media, a number of applications use optical disks for providing such “permanent” or “non-alterable” storage. These optical disks have a write once, read many times characteristic and are called WORM devices. Examples of such optical storage media are disclosed in U.S. Pat. No. 4,689,778 to Miura et al. for an Optical Disc Recording/Reproducing Apparatus with Recorded Track-Section Detector; U.S. Pat. No. 4,760,566 to Kobayashi et al. for a Method of Controlling Write Operation for Rotating Type Recording Medium; U.S. Pat. No. 4,831,611 to Sasaki et al. for an Optical Writing and Reading Method and Apparatus; and U.S. Pat. No. 5,023,854 to Satoh et al. for a Disc Having a Data Read-Only Area and a Data Recording Arm and a Recording Reproducing System Therefor.
The Miura et al. patent discloses a method by which a determination is made concerning the preexistence of data on a track prior to recording information on that track. In essence, Miura et al. use different tracks to determine if data exists in any part of a track and thereafter prevents writing to any track which indicates the presence of preexisting data. Kobayashi et al. disclose a process by which data can be overwritten with or without pre-erasing depending upon the existence of the flag field associated with each block. Sasaki et al. disclose a similar approach wherein overwriting is prevented by writing on a mark recording region. Thereafter overwriting is inhibited. The Satoh et al. patent discloses a read-only type optical disk and related disk drive divided into read-only and read/write areas recorded in the respective identifier portions. This prevents writing to the read-only areas.
Generally such systems transfer data to optical disks in two steps. Data is generated on magnetic disk storage systems. When the data is fixed, it then transfers to the optical disk. This involves multiple transfers.
U.S. Pat. No. 5,233,576 (1993) to Curtis et al. discloses a multi-functional optical disk drive and media using a magneto-optical disk media that can operate as a read/write storage media or as a WORM media and can eliminate transfers from a magnetic disk storage device to an optical disk. The apparatus and methodology disclosed in the Curtis et al. patent is directed to providing a read/write apparatus that has the same level of security as a WORM device. In the apparatus, a media descripter table is contained within a control track. The media also includes a storage state bit within each sector of each track of the media. This storage state bit defines whether the sector is writable or read-only. When the bit is set into the writable state, the sector can be written many times (i.e., operates in a read/write mode). Once the bit is changed to read-only, the sector can no longer be written and cannot be reset to a read/write state. Curtis et al. disclose two locations for each storage bit, namely: (1) the sector mark field area of each sector or (2) the data field area of each sector.
In typical data processing systems, optical disks are stored in changers that must mount each optical disk as it is required. The time required to write optical disks and even to read data from those disks can be up to an order of magnitude longer than corresponding times that characterize magnetic disk storage media. By virtue of the fact that a typical read-only disk can be used only once, once the data on the disk becomes obsolete the optical disk cannot be used again. All these characteristics can increase the “per byte” storage costs beyond the per byte storage costs for magnetic disk storage media.
The Curtis et al. patent does disclose a system that overcomes certain problems. For example, the system disclosed in the Curtis et al. patent eliminates the step of transferring from magnetic media to optical media. However the Curtis et al. patent writing operations require an analysis of data on the optical disk. That is, writing operations to read-only areas produce error messages that are determined only after the retrieval of status resident on the storage media. Such operations, that occur after delays in the millisecond range, can seriously affect system performance. Consequently the general approach has continued to be writing the data to a magnetic storage media and then, upon the data becoming stable, transferring that data to an optical disk.
SUMMARY
Therefore it is an object of this invention to provide a magnetic disk storage media with the characteristics of an optical disk.
Another object of this invention is to provide a magnetic disk storage media that can be controlled to provide a write-once function.
Still another object of this invention is to provide magnetic disk storage with the permanent storage characteristics of an optical disk while retaining the reading and writing speeds inherent in a magnetic disk storage media.
In accordance with this invention, read/write storage media operates in a data processing system in which writing operations transfer data to a system cache memory for staging to the storage media. At least one group of contiguous storage locations is defined to have the capability of switching between a read/write mode and a write-once, read-many times-mode. A correspondence is defined in the system cache memory of each of the storage locations in the group and establishes the modes. The status retained in the system cache memory enables the determination of the storage mode. When the read-only mode exists, the writing operation is blocked; otherwise a conventional writing operation occurs.
In accordance with another aspect of this invention, a method is provided for enabling at least one track of storage locations in a magnetic disk storage device to operate in a selected one of read-only or read-write operating modes. The magnetic disk storage device operates in a system including a system cache memory for receiving writing requests from a central processor, temporarily storing the writing request and corresponding data and transferring the corresponding data from the system cache memory to at least one track on the magnetic disk storage device. The method comprises the steps of (1) defining a correspondence in the system cache memory that identifies each track having the capability of operating in the two modes, (2) defining, for each identified track in the correspondence, one of the read-only and read-write operating modes, and (3) enabling the system to transfer data from the system cache memory to one of the identified tracks only when the correspondence in the system cache memory specifies that the identified track is operating in a read-write mode.


REFERENCES:
patent: 4689778 (1987-08-01), Miura et al.
patent: 4760566 (1988-07-01), Kobayashi et al.
patent: 4831611 (1989-05-01), Sasaki et al.
patent: 4939598 (1990-07-01),

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Worm magnetic storage device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Worm magnetic storage device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Worm magnetic storage device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2568977

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.