Paper making and fiber liberation – Processes and products – Multi-layer waterlaid webs or sheets
Reexamination Certificate
2003-08-04
2004-10-26
Chin, Peter (Department: 1731)
Paper making and fiber liberation
Processes and products
Multi-layer waterlaid webs or sheets
C162S129000, C162S301000, C162S300000, C162S109000
Reexamination Certificate
active
06808599
ABSTRACT:
BACKGROUND OF THE INVENTION
In the manufacture of tissue roll products, such as bath tissue and paper towels, uncreped throughdried products have gained wide acceptance with consumers. These products are characterized in part by their high bulk, three-dimensional texture and resilience. In the case of paper towels, exceptional bulk is provided by contoured throughdrying fabrics that impart high and wide wales or ridges that run in the machine direction of the product. In the case of bath tissues, the same technology is utilized, but the throughdrying fabrics employed impart a smaller scale topography to the product. While it would be desirable to use the same throughdrying fabric for both towels and bath tissue from the standpoint of manufacturing efficiency, using the more highly contoured towel throughdrying fabric for making bath tissue causes two significant problems.
First, the consumer preferred fiber basis weights and tensile strengths associated with bath tissue products are, for the most part, less than the basis weights and tensile strengths preferred for paper towels. Given the high contour of the fabrics used for paper towel products, the lower basis weights and tensile strengths used for bath tissue products cannot accommodate the substantial z-directional displacement (if the web during wet molding and drying. As a result, the final product contains an unacceptable number of pinholes caused by the web being stretched to conform to the topography of the throughdrying fabric.
In addition, because bath tissue is desirably calendered to control caliper and soften and smoothen the product, the dried web undergoes widening as it is “extruded” from the calender nip. This web widening is amplified as the bulk of the tissue base sheet is increased. This extrusion phenomenon creates inconsistencies during winding, which results in substantial waste and delay.
Therefore there is a need for a method of making highly contoured uncreped throughdried paper towels and bath tissue on the same tissue machine using the same throughdrying fabric.
SUMMARY OF THE INVENTION
It has now been discovered that highly textured bath tissue and paper towels having different basis weights can be made on the same tissue machine using a common throughdrying fabric. This provides manufacturing flexibility by eliminating the need to change throughdrying fabrics whenever switching from bath to towel manufacture or vice versa. It also simplifies fabric purchasing and inventorying.
In one aspect, the invention resides in a papermaking fabric having a textured sheet contacting surface comprising substantially continuous machine-direction ridges separated by valleys, wherein the height of the ridges is from about 0.5 to about 3.5 millimeters, the width of the ridges is about 0.3 centimeter or greater, and the frequency of occurrence of the ridges in the cross-machine direction of the fabric is from about 0.2 to about 3 per centimeter. The fabric can be woven or nonwoven, or a combination of a woven substrate with an extruded sculpture layer providing the ridges.
In another aspect, the invention resides in a continuous method of making bath tissue and paper towels on the same papermaking machine comprising: (a) forming a tissue web having a first basis weight; (b) transferring the tissue web to a throughdrying fabric having substantially continuous machine-direction ridges separated by valleys, wherein the height of the ridges is from about 0.5 to about 3.5 millimeters, the width of the ridges is about 0.3 centimeter or greater and the frequency of the ridges in the cross-machine direction is from about 0.2 to about 3 per centimeter; (c) throughdrying the tissue web; (d) winding the tissue web into a parent roll; (e) converting the parent roll into bath tissue; (f) forming a tissue web having a second basis weight which is greater than the first basis weight; (g) transferring the web to the same throughdrying fabric of step (b); (h) throughdrying the web; (i) winding the dried web into a parent roll; and (j) converting the parent roll into paper toweling.
In another aspect, the invention resides in a tissue sheet having Wide Wales, a basis weight of from about 10 to about 35 grams per square meter (gsm) and one or more of the following pinhole-related indexes: a Pinhole Coverage Index of about 0.25 or less, a Pinhole Count Index of about 65 or less and a Pinhole Size Index of about 600 or less.
In another aspect, the invention resides in a tissue sheet having Wide Wales and a geometric mean tensile strength of from about 500 to about 1200 grams per 7.62 centimeters, a basis weight of from about 10 to about 45 gsm and one or more of the following pinhole-related indexes: a Pinhole Coverage Index of about 0.25 or less, a Pinhole Count Index of about 65 or less and a Pinhole Size Index of about 600 or less. As used herein, “Wide Wales” are a series of parallel ridges on the surface of a tissue sheet which are separated by the lowest areas of the sheet (valleys). The Wide Wales are oriented substantially in the machine direction (MD) of the tissue sheet and impart a surface appearance similar to that of corduroy fabrics. The peaks of the ridges can be relatively flat and the sides of the ridges can be relatively steep. The width of a Wide Wale can be from about 0.3 to about 3.8 centimeters, more specifically from about 0.3 to about 2.0 centimeters; more specifically from about 0.3 to about 1.5 centimeters, more specifically from about 0.3 to about 1.0 centimeter, and still more specifically from about 0.3 to about 0.5 centimeter. The height of a Wide Wale, as measured from the highest point on the ridge to the lowest point on the same side of the sheet between the ridge in question and an adjacent ridge, can be from about 0.5 to about 3.5 millimeters, more specifically from about 0.6 to about 2.0 millimeters, more specifically from about 1.0 to about 2.0 millimeters, more specifically from about 1.0 to about 1.5 millimeters, and still more specifically from about 0.75 to about 1.0 millimeters. The frequency of the 15 occurrence of Wide Wales in the cross-machine direction (CD) of the sheet can be about 0.2 to about 3 per centimeter, more specifically from about 0.2 to about 2 per centimeter, still more specifically from about 1.8 to about 2.3 per centimeter. All of the foregoing dimensions substantially correspond to the dimensions of the ridges and their spacing in throughdrying fabrics from which the tissue sheets are made.
The basis weight of the tissue sheets of this invention can be from about 10 to about 45 gsm, more specifically from about 10 to about 35 gsm, still more specifically from about 20 to about 35 gsm, more specifically from about 20 to about 30 gsm and still more specifically from about 30 to about 35 gsm.
The geometric mean tensile strength (GMT) of the tissue sheets of this invention can be about 1200 grams or less per 7.62 centimeters (hereinafter designated simply as “grams”), more specifically from about 500 to about 1200 grams, still more specifically from about 500 to about 1100 grams, still more specifically from about 800 to about 1000 grams. The GMT is the square root of the product of the MD tensile strength and the CD tensile strength. Tensile strengths are measured using a crosshead speed of 254 millimeters per minute, a full scale load of 4540 grams, a jaw span (gauge length) of 50.8 millimeters and a specimen width of 762 millimeters. A suitable method is disclosed in U.S. Pat. No. 5,656,132 issued Aug. 12, 1997 to Farrington et al., which is herein incorporated by reference.
The ratio of the geometric mean modulus (GMM) to the GMT for tissue sheets of this invention can be about 5 kilometers or less per kilogram, more specifically from about 4 to about 5 kilometers per kilogram. (The GMM is the square root of the product of the MD modulus and the CD modulus.)
The “Caliper” of the products of this invention can be from about 700 to about 1500 microns, more specifically from about 700 to about 1300 microns, and still more specifically from about 750 to about 1100 microns. Ca
Bakken Andrew Peter
Burazin Mark Alan
Kowalski Christopher Scott
Kressner Bernhardt Edward
Muilally Cristina Asensio
Chin Peter
Croft Gregory E.
Halpern Mark
Kimberly--Clark Worldwide, Inc.
LandOfFree
Wide wale tissue sheets and method of making same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wide wale tissue sheets and method of making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wide wale tissue sheets and method of making same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3274632