Paper making and fiber liberation – Processes and products – With coating after drying
Reexamination Certificate
2001-05-25
2002-04-02
Chin, Peter (Department: 1731)
Paper making and fiber liberation
Processes and products
With coating after drying
C162S145000, C162S146000, C162S156000, C162S164100, C162S168100, C162S169000, C162S184000, C162S185000, C162S186000, C427S375000, C427S379000, C427S389800
Reexamination Certificate
active
06365001
ABSTRACT:
TECHNICAL FIELD
Vinyl floor coverings containing a reinforcing layer of glass fiber mat are widely used in residential construction, particularly in Europe. Unlike organic felt or paper carriers, the glass mat provides a dimensionally-stable substrate for coating and printing operations during production of the floor covering. Placement of the reinforcement layer near the center of the structure yields a product that resists curling, making the floor covering suitable for loose-lay installations.
Problems exist when the floor covering is installed over a wood subfloor due to the fairly large dimensional changes associated with wood as the temperature and humidity change. As the subfloor “dries out” in the winter, it can shrink by as much as 0.5 percent. Unless the vinyl floor covering can accommodate this change in dimension through compression, the vinyl floor covering may buckle to relieve the compressive loading.
The glass mats currently used as the reinforcing layer in vinyl floor covering have high compressive strengths which can result in severe buckling when they are installed over wood subfloors. A typical reinforcing mat used in floor coverings consists of glass textile fibers with a diameter of 9 to 11 microns and length of 6 mm. These fibers are typically held together with a rigid binder such as a urea-formaldehyde resin or poly(vinyl alcohol). The high compressive stiffness of these reinforcing mats is not substantially altered during the manufacturing of the floor covering.
U.S. Pat No. 4,849,281 discloses one solution to the problem of the high compressive stiffness of the glass reinforcing layer. The glass mat of that patent consists of a blend of glass textile fibers and glass wool fibers. These fibers are bonded with an elastomeric binder consisting of a mixture of a carboxylated styrene-butadiene latex and a methylated melamine-formaldehyde resin.
DISCLOSURE OF INVENTION
We have now invented a new wet-laid mat which is to be used as a reinforcing layer in surface coverings, particularly vinyl floor coverings. The wet-laid mat of the present invention consists of a blend of glass textile fibers and polymeric binder fibers and/or polymeric binder powder with a secondary polymeric binder to achieve a compressible substrate for vinyl flooring.
The general procedure for preparing the mat is as follow. A slurry of glass textile fibers, polymeric binder fibers and/or polymeric binder powder, and optionally poly(vinyl alcohol) powder or fiber are formed into a mat using conventional wet-laid forming techniques, which are well known to those practiced in the art. The resulting nonwoven web is passed through an oven to dry the mat and fuse the binder fibers and/or powder. We then apply a secondary binder by saturating the mat with a water-based polymer solution or dispersion, removing the excess binder and again passing the mat through an oven to dry and cure the secondary binder. When the resulting mat is substituted for conventional glass mats in typical vinyl floor covering constructions, a marked improvement in compressive behavior is found. Floor coverings containing the new mat are thus highly suitable for use over wood subfloors.
In an alternative embodiment, we can provide a slurry of glass fibers and one or more polymeric binder fibers and/or powders, and dewater the slurry to form a wet-laid mat. Next, we apply a secondary water-based binder to the wet-laid mat, dewater a second time and then dry the mat to fuse the binders to the glass fibers.
In still another alternative embodiment, we can provide a slurry of glass fibers and one or more polymeric binder fibers and/or powder, dewater the slurry to form a wet-laid mat and dry the mat to fuse the binders to the glass fibers. Next, we roll up the mat without applying the secondary binder. We then can apply the secondary binder at a later time in separate off-line process steps.
The slurries in either or both alternative embodiments may further include poly(vinyl alcohol) powder or fiber.
The general procedure of preparation of the mat is as follows. A slurry of glass textile fibers and organic polymeric binder fibers and/or powder, and optionally, poly(vinyl alcohol) powder or fiber is prepared at a concentration of 0.1 to 4.0 percent in water. The organic polymeric binder may be added as fiber, powder, or a combination of fibers and powder. The water may also contain viscosity modifiers, surfactants, and defoaming agents that are commonly used in the manufacture of wet-laid nonwovens. Proportions of the materials may be in the range of 50 to 90 percent glass, 10 to 50 percent binder fiber, binder powder, or mixtures thereof, and 0 to 15 percent poly(vinyl alcohol). After the fibers have dispersed, the slurry is transferred to the forming section of an inclined-wire Fourdrinier machine and dewatered. The resulting web is passed through an oven to dry the mat and fuse the binder fibers and/or binder powder. A secondary binder is then applied by saturating the dry mat with a water-based polymer composition and removing the excess with a vacuum slot. The mat is then passed through a second oven where it is again dried and the binder cured. This product would then be used in the manufacture of a sheet vinyl flooring product in much the same way that wet-laid glass mats are currently used in the flooring industry.
An alternative process we use is a process for producing a wet-laid nonwoven comprising the steps of providing a slurry of glass fibers and one or more polymeric binder fibers and/or polymeric binder powders; dewatering the slurry to form a wet-laid nonwoven mat; applying a secondary water-based binder to the wet-laid mat; removing excess water from the saturated mat; and drying and curing the mat to form a finished nonwoven mat.
The second alternative we use includes the steps of providing a slurry of glass fibers and one or more polymeric binder fibers and/or polymeric binder powders, removing excess water from the saturated mat, and drying the mat. We then roll up the mat without applying the secondary binder. At a later time in a separate off-line process, we apply the secondary water-based binder, remove the excess water with a vacuum and then pass the mat through an oven to dry and cure the binder.
In the various processes of our invention, we use machines such as wire cylinders, Fourdrinier machines, Stevens Former, Roto Former, Inver Former and Venti Former machines to form the wet-laid mat. A head box deposits the slurry onto a moving wire screen. Suction or vacuum removes the water which results in the wet-laid mat. Conventional ovens perform the drying and fusing steps.
Conventional glass-reinforced flooring products are too dimensionally stable to be applied successfully over wood subfloors. Contraction of the subfloor as the wood dries out during the winter months applies a compressive strain to the vinyl flooring. If the floor covering is unable to dissipate the compressive loading through in-plane movement, the material will deflect vertically, resulting in buckling or doming of the floor covering. Standard glass mats consisting of glass textile fibers and a rigid binder do not allow this in-plane movement.
We have found, however, that glass textile fibers bonded with polymeric binder fibers and/or polymeric binder powders provide a mat that when encapsulated with typical vinyl plastisols yields a floor covering with substantial capability for in-plane movement. A simple combination of glass and binder fibers and/or powders is less preferable in a flooring mat because the binder fibers and/or powders will tend to soften or melt at the temperatures needed to gel the vinyl plastisols applied by the flooring manufacturer. Excessive softening of the binder at this point would result in stretching or tearing of the web.
This problem can be avoided through the use of a secondary binder which retains some of its strength at the gelation temperature. A secondary binder provides additional strength and dimensional stability to the web in the initial stages of processing by the floor covering manuf
Geel Paul
Helwig Gregory S.
Jongetjes Hendrik
Barns Stephen W.
Chin Peter
Eckert Inger H.
Owens Corning Fiberglas Technology Inc.
LandOfFree
Wet-laid nonwoven mat and a process for making same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Wet-laid nonwoven mat and a process for making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Wet-laid nonwoven mat and a process for making same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2856147