Winding – tensioning – or guiding – Reeling device – With spring motor
Reexamination Certificate
2002-11-15
2004-05-11
Rivera, William A. (Department: 3654)
Winding, tensioning, or guiding
Reeling device
With spring motor
C242S383200, C242S383500, C242S384600
Reexamination Certificate
active
06732967
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a webbing retractor which forms a seat belt device of a vehicle, and to a method of assembling a webbing retractor for assembling this type of webbing retractor.
2. Description of the Related Art
One longitudinal direction end portion of a webbing belt, which forms a seat belt device for restraining the body of a vehicle occupant seated in a seat of a vehicle, is anchored on the take-up shaft of a webbing retractor which is provided, for example, at the side of the seat. The other end of the webbing belt is fixed at an anchor plate provided in a vicinity of the webbing retractor. Above the retractor, e.g., at the upper end of the center pillar of the vehicle, the intermediate portion in the longitudinal direction of the webbing belt is passed through an insert-through hole formed in a through-anchor, and is folded back downwardly.
The portion of the webbing belt between the other end thereof and the folded-back portion thereof at the through-anchor passes through an insert-through hole of a tongue plate. By pulling the tongue plate, the webbing belt, which is taken-up on the take-up shaft of the retractor, is pulled out. Then, when the tongue plate is connected to a buckle device provided at the side of the seat opposite the side at which the retractor is provided, the webbing belt is set in a state of being applied to the vehicle occupant.
In a webbing retractor such as that described above, a supporting member, which is made of resin and is mounted to a power spring which urges the take-up shaft, and a gear, which is made of resin and which forms a lock mechanism which restricts rotation of the take-up shaft in the direction of pulling out the webbing belt when the vehicle is in a state of rapid deceleration, are mounted to the axial direction ends of the take-up shaft. The supporting member and the gear and the like are supported via other members at a pair of leg plates forming a frame. The take-up shaft is thereby shaft-supported at the frame so as to be freely rotatable.
When the take-up shaft rotates, and in particular, when the take-up shaft rotates due to the webbing belt being pulled-out suddenly, there are cases in which the take-up shaft does not only rotate around the axial center thereof, but also attempts to shift along the axial direction thereof.
As described above, resin members are mounted to the both ends of the take-up shaft. Because the take-up shaft is supported via these resin members, when the take-up shaft attempts to shift in the axial direction thereof due to excessive force, the force thereof is applied to the resin members.
Depending on the type of the webbing retractor, there are cases in which a take-up shaft, whose entire length along the axial direction thereof is longer than the interval between the pair of leg plates, is used.
In this type of webbing retractor, it has been thought to pass the take-up shaft through ratchet holes of the leg plates, which ratchet holes form the aforementioned lock mechanism, so as to dispose the take-up shaft at a predetermined position with respect to the pair of leg plates.
However, when shifting (displacement) of the take-up shaft in the axial direction such as described above arises, the take-up shaft attempts to come out from the ratchet holes. Therefore, the assembly process of simply passing the take-up shaft through the ratchet holes of the leg plates and disposing the take-up shaft at a predetermined position with respect to the pair of leg plates, is difficult. As a result, the bothersome assembly process of mounting the take-up shaft to the frame while moving the take-up shaft complexly and in three dimensions, has been carried out.
SUMMARY OF THE INVENTION
In view of the aforementioned, an object of the present invention is to provide a webbing retractor and a method of assembling the webbing retractor in which displacement (shifting) in the axial direction of a take-up shaft with respect to a frame can be restricted with a simple structure, and assembly of the take-up shaft to the frame is made easy.
A webbing retractor of a first aspect of the present invention has a take-up shaft, a frame, and a take-up shaft stopper device. The take-up shaft is a member on which the proximal end portion of an elongated, strip-shaped webbing belt is anchored, and which takes up the webbing belt from the proximal end side thereof by rotating in a take-up direction which is one direction around an axial center of the take-up shaft. The frame is a member having a pair of leg plates which oppose one another along an axial direction of the take-up shaft, and which indirectly supports the take-up shaft at the leg plates. The take-up shaft stopper device is a member which is mounted to one portion of an outer periphery of the take-up shaft from a direction orthogonal to the axial direction of the take-up shaft. The take-up shaft stopper device has a restricting wall. In the state in which the take-up shaft stopper device is mounted, the restricting wall extends further than the take-up shaft in the direction orthogonal to the axial direction of the take-up shaft, and opposes the leg plates along the axial direction of the take-up shaft.
In the webbing retractor having the above-described structure, the proximal end portion of the elongated, strip-shaped webbing belt is anchored on the take-up shaft which is indirectly supported at the pair of leg plates of the frame. Due to the take-up shaft rotating in the take-up direction which is one direction around the axis thereof, the webbing belt is taken-up onto and accommodated on the take-up shaft.
In this accommodated state, by rotating the take-up shaft in the pull-out direction which is opposite to the take-up direction by pulling the distal end side of the webbing belt, the webbing belt which is taken-up on the take-up shaft is pulled out. Due to a vehicle occupant making the webbing belt, which has been pulled out, span across his/her body at the front side of his/her body, the webbing belt is applied to the body of the vehicle occupant.
In cases such as those described above in which the webbing belt is taken-up on the take-up shaft and accommodated, or the webbing belt which has been taken up on the take-up shaft is pulled out, or the like, when the take-up shaft is rotated, the rotational force is applied not only in the direction around the axis of the take-up shaft, but also in the axial direction of the take-up shaft, and the take-up shaft attempts to shift in the axial direction thereof with respect to the frame.
In the present webbing retractor, the restricting wall of the take-up shaft stopper device, which is mounted to one portion of the outer periphery of the take-up shaft, extends further outwardly than the take-up shaft in the direction orthogonal to the axis of the take-up shaft. The restricting wall opposes the pair of leg plates along the axial direction of the take-up shaft. Thus, when the take-up shaft attempts to shift in the axial direction, the leg plates interfere, via the restricting wall, with the take-up shaft to which the take-up shaft stopper device is mounted. In this way, displacement of the take-up shaft along the axial direction is restricted.
In this way, displacement of the take-up shaft along the axial direction can be restricted even in a structure in which, for example, the interval between the pair of leg plates is shorter than the axial direction dimension of the take-up shaft and the take-up shaft is supported at the pair of leg plates indirectly by another connecting member or the like in the state in which the take-up shaft has been passed through holes formed coaxially in the pair of leg plates. Accordingly, the take-up shaft can be prevented from coming out from the holes, and it is possible to prevent an excessive load from being applied to the other connecting member due to displacement of the take-up shaft. Thus, the present webbing retractor can reliably be operated over a long period of time.
Moreover, the take-up shaft stopper device
Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho
Nixon & Peabody LLP
Rivera William A.
LandOfFree
Webbing retractor and method of assembling webbing retractor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Webbing retractor and method of assembling webbing retractor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Webbing retractor and method of assembling webbing retractor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3202707