Warm processor swap in a multiprocessor personal computer...

Error detection/correction and fault detection/recovery – Data processing system error or fault handling – Reliability and availability

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S100000

Reexamination Certificate

active

06308285

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field Of The Invention
The present invention relates generally to computer systems and, more particularly, to methods and apparatus for facilitating the removal or replacement of a processor.
2. Description Of The Related Art
About two decades ago, a relatively compact and basic computing device, which would come to be known as the personal computer or PC, was being developed. Like all personal computers since, these early personal computers utilized microprocessors coupled to various types of memory devices. However, due to the extremely limited computing capabilities of these early microprocessors and the limited size and costliness of high speed memory, these early personal computers truly were nothing but stand alone personal computing devices.
In the intervening years, microprocessors, memory devices, software, and many other portions of a computing system have seen rapid improvements in speed, capacity, complexity, and performance. By way of example, the latest generation microprocessors from Intel Corporation include the Pentium, Pentium Pro, and Pentium II Xeon (Slot-
2
) microprocessors. These processors are so powerful that they not only would have been considered an unbelievable evolution over the Z80 and 8080 microprocessors of two decades ago, but they also offer significant enhancements over the prior generation 486 processors. Even in view of this rapid and incredible improvement of microprocessors, the resource requirements of software are always increasing, as are the variety of uses for “personal” computers. These needs, in turn, drive the need for the design and development of ever more powerful and efficient computer systems.
In view of these vast technological improvements, personal computers have made great strides from their humble beginnings to provide solutions for the ever expanding needs and desires of the computing public. Over the course of the past twenty years, personal computers have become an indispensable part of everyday life. Virtually every business relies to some degree upon personal computer systems, and personal computers are now found in many homes. Indeed, personal computers control everything from stock market trading to telephone networks.
For example, two decades ago, virtually all large or complicated computing operations, from data processing to telephone networks, were handled by large mainframe computers. However, networks of microprocessor-based personal computers have made tremendous inroads into areas that were once the exclusive domain of such large mainframe computers. Such networks of personal computers provide the computing power and centralized access to data of mainframe systems, along with the distributed computing capability of stand alone personal computers. These networks typically include tens, hundreds, or even thousands of personal computers, including powerful personal computers that can act as servers. Indeed, as such networks have become larger and more complex, there has been a need for improving the computing performance of servers on the network. To address this need for more powerful servers, multiple processors are now being used in personal computers which are configured to act as servers.
The expansion of microprocessor-based personal computers into the mainframe domain, however, has not been problem free. Mainframe computers have historically been designed to be reliable and extremely fault tolerant. In other words, a failure of a portion of the mainframe computer does not typically result in lost or corrupted data or extensive down time. Moreover, mainframe computers have historically been very service friendly. In other words, mainframe computers may be upgraded or repaired, in many circumstances, without shutting down the computer. Because personal computer networks are increasingly being used instead of mainframe systems, users are demanding that such networks provide fault tolerance and serviceability similar to that found in the mainframe systems.
In view of these user demands, manufacturers need to devise various ways for improving the serviceability of the personal computers used in personal computer networks. Many of these developments should concentrate on the serviceability of the servers in a personal computer network, because servers are typically the cornerstone of most networks. In other words, because the servers typically provide applications, data, and communications among the various work stations, it would be desirable if a server could be serviced without unduly affecting the network. Thus, when a processor needs to be removed from operation, it would be desirable to replace the component with minimal disruption to the network.
To replace a processor, it currently must be taken out of service temporarily. This may cause loss of information and of configuration, and it typically requires the system to be rebooted. Depending upon the redundancy and complexity of the computer system, such a temporary removal may have wide ranging effects, from slightly degrading the overall performance of the computer system to temporarily removing the computer system from service. This problem is exacerbated by the fact that it is typically desirable to upgrade a computer's processors from time to time. Such upgrades must typically be scheduled during non-peak times in order to minimize the downtime or performance degradation of the networked computer system.
The present invention may address one or more of the problems discussed above.
SUMMARY OF THE INVENTION
Certain aspects commensurate in scope with the disclosed embodiments are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.
In a multiprocessor computer, it may be desirable to remove or replace one or more of the processors for various reasons. As described herein, the computer may be placed into a sleep mode during processor removal or replacement. Specifically, all processors are placed into a sleep mode. The power to the processor to be removed or replaced is then disconnected, and the user is informed that the processor may be removed or replaced. Once the processor has been replaced, the replacement processor is powered up, and it is configured in the same manner as the processor it replaced. Once configured, the replacement processor is placed into a sleep mode. Then, all processors are awakened, and the computer is returned to normal operation without the need to reboot the computer.


REFERENCES:
patent: 5761518 (1998-06-01), Boehling et al.
patent: 5978923 (1999-11-01), Kou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Warm processor swap in a multiprocessor personal computer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Warm processor swap in a multiprocessor personal computer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Warm processor swap in a multiprocessor personal computer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2593456

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.