Virtual channel bus and system architecture

Electrical computers and digital data processing systems: input/ – Intrasystem connection – Bus access regulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S107000, C710S305000

Reexamination Certificate

active

06393506

ABSTRACT:

BACKGROUND
1. Field of the Invention
This invention relates to digital data communication, and more particularly to a system and method for coordinating the transfer of digital data between functional modules in a computer system.
2. Description of the Related Art
In an advanced multimedia PC system, the system memory is a central resource. Unlike PC systems of a previous generation, which are typically designed around the central processing unit (CPU), the memory system in such an advanced multimedia system is much more heavily utilized than before. Typically, the various blocks or subsystems of the system share a communication link, or bus, for exchanging data. However, at higher processing speeds and system complexities, data transfer between subsystems (e.g., I/O devices) or between a subsystem and the main memory remains a performance bottleneck. Maximizing bus speed to accommodate the demands of higher processing speeds and interconnecting large numbers of I/O devices require higher bus availability and bandwidth. A fast response time for I/O operations can be achieved by minimizing bus access time through streamlining the communication path. The bus bandwidth can be increased using buffering and by transferring larger units of data, at the expense of latency. However, bus speed improvement is not straight-forward, since modules of a multimedia system typically include subsystems of widely varying latencies and data transfer rates.
One method for increasing the effective bus bandwidth shared by multiple devices utilizes a split transaction bus, which is released by a subsystem as soon as possible, even when only a portion of a transaction is complete. In a split transaction bus, however, the bus is released to allow use by another requester. However, once the bus is released, additional transactional overhead is incurred by the bus master to re-acquire the bus. For example, in a split transaction protocol, to resume an interrupted bus transaction, a memory system is required to signal the requester to indicate readiness. Thus, in such a system, additional transaction overhead is required to communicate the requester's identity to the memory system. Also, a split transaction protocol is typically more expensive to implement, primarily because of the need to keep track of the parties of a bus transaction.
One improvement of bus access provides additional bus masters into the system. A master module initiates and controls all bus requests. In a system having a single bus master (e.g., a processor bus is typically controlled by a CPU), all requests are initiated and controlled by the single bus master, thus requiring involvement by the bus master in every bus transaction. The overhead cost thus incurred can be substantial. For example, a single sector read from a disk may require the processor to intervene many times.
Faster and higher bandwidth subsystems cannot require the processor to intervene every bus transaction. Thus, an alternative architectural scheme using multiple bus masters is developed. With multiple bus masters, a bus arbiter is necessary. In a bus arbitration scheme, an I/O device signals a bus request and carries out a bus transaction only when the bus request is granted. One problem with a such a scheme results from the arbiter becoming a bottleneck for bus usage. In particular, where an arbiter receives multiple request lines, the transactional overhead in choosing among independent devices requesting bus access and notifying the selected device create delays.
Accordingly, there is a need for a bus system and architecture by which both bus access and effective bus bandwidth are enhanced. There is also a need for a bus arbitration scheme that increases the effective bandwidth of a bus without incurring additional latencies resulting from additional transactional overhead of a bus arbitration scheme and the possibility of the bus arbiter becoming the I/O roadblock. There is also a need for a bus architecture that provides enhanced bus access to I/O devices without incurring additional arbitration-related latencies.
SUMMARY OF THE INVENTION
This invention provides a memory-centric, modularized single-chip processor system, and includes an on-chip split-transaction bus with independent address and data lines. A centralized bus arbiter module uses REQ/GNT protocols to independently arbitrate concurrent ownership of a data bus. Multiple concurrent “virtual” channels are defined by the arbiter, each virtual channel being owned by a master-slave pair. Concurrent ownership by multiple master/slave pairs results in high utilization of a single bus, and eliminates re-arbitration delays.
The inter-module digital signal communication system of this invention includes a bus having separate data lines and address lines. Also, the handshaking transactions among the master, slave, and arbiter to determine bus ownership are de-coupled from data transfer operations on the data bus, thus allowing any access delays over the address lines to overlap with data transfer operations, resulting in high utilization of the available data bus bandwidth. Both the address bus and the data bus may be any width. In one embodiment, the address bus is 32 bits wide, and the data bus either 64 bits or 128 bits wide.
In another embodiment, multiple data buses may be employed. In a memory system which supports burst access, the present invention reduces the number of master/slave handshaking transactions. Accordingly, the architecture of this invention is scaleable to accommodate multiple data buses of any width.
Modules connected to the bus include adaptable interface logic circuits and drivers. These interface circuits permit both on-chip and external modules (i.e., off-chip modules) to utilize the virtual channel capabilities of the architecture of the system of this invention. The logic circuits in a master or slave module recognize and store their virtual channel assignments, and enable the corresponding interface drivers when data transfer access to the bus is granted to the assigned virtual channel.
In accordance with one aspect of the system of this invention, a bus arbiter assigns a virtual channel to each master/slave pair requesting the data bus for data transfer between the master module and a slave module. Each virtual channel represents a timeslice on the bus and is owned by a separate master/slave pair, thereby permitting multiple master/slave pairs to have concurrent ownership of the singular data bus.
Once the bus arbiter grants data access of the bus to a virtual channel, the arbiter asserts a “channel active” signal to initiate actual data transfers between the master/slave pair assigned to that virtual channel. The arbiter multiplexes between virtual channels based on the readiness of master/slave pairs and on the pre-assigned priority of each master.
Concurrent ownership of the data bus by multiple master/slave pairs advantageously enhances bus accessibility over conventional split-transaction bus protocols since the transactional overhead associated with bus re-acquisition protocols between a master/slave pair is eliminated. Since each channel, hence each master/slave pair, has its own unique channel active signal, data transfer between the master/slave pair commences immediately upon the arbiter asserting the appropriate “channel active” signal. Initial acquisition, or re-acquisition of the data bus is accomplished without the handshaking protocols associated with a conventional split transaction bus each time the data bus is acquired. As a result, the virtual channel architecture of this invention permits virtually simultaneous parallel transfers on a single data bus, or on multiple data buses, and allows for maximum bus accessibility and bandwidth utilization of the memory resource.
In accordance with another aspect of the device of this invention, various priority protocols may be used to determine which concurrent owner is granted access to the bus. Concurrent data transfers and maximum utilization of available data bus bandwidth is realized by timeslicing the d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Virtual channel bus and system architecture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Virtual channel bus and system architecture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Virtual channel bus and system architecture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2830034

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.