Very large-scale pressure swing adsorption processes

Gas separation: processes – Solid sorption – Including reduction of pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C095S103000, C095S105000, C095S130000, C095S136000, C095S137000, C095S139000, C095S140000, C095S143000

Reexamination Certificate

active

06210466

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to processes for the separation of gases using pressure swing adsorption (PSA). More particularly, the present invention relates to the use of a particular combination of PSA steps in a particular manner to significantly expand the capacity of the separation process.
BACKGROUND OF THE INVENTION
PSA provides an efficient and economical means for separating a multi-component gas stream containing at least two gases having different adsorption characteristics. The more strongly adsorbable gas can be an impurity which is removed from the less strongly adsorbable gas which is taken off as product or the more strongly adsorbable gas can be the desired product which is separated from the less strongly adsorbable gas. For example, it may be desired to remove carbon monoxide and light hydrocarbons from a hydrogen-containing feed stream to produce a purified (99+ percent) hydrogen stream for a hydrocracking or other catalytic process where these impurities could adversely affect the catalyst or the reaction. On the other hand, it may be desired to recover more strongly adsorbable gases, such as ethylene, from a feedstream to produce an ethylene-rich product.
In PSA, a multi-component gas is typically fed to at least one of a plurality of adsorption zones at an elevated pressure effective to adsorb at least one component, while at least one other component passes through. At a defined time, the feedstream to the adsorber is terminated and the adsorption zone is depressurized by one or more countercurrent depressurization steps wherein pressure is reduced to a defined level which permits the separated, less strongly adsorbed component or components remaining in the adsorption zone to be drawn off without significant concentration of the more strongly adsorbed components. Then, the adsorption zone is depressurized by a countercurrent depressurization step wherein the pressure on the adsorption zone is further reduced by withdrawing desorbed gas countercurrently to the direction of the feedstream. Finally, the adsorption zone is purged with the effluent from an adsorption bed undergoing a countercurrent depressurization step and repressurized. The final stage of repressurization is typically with product gas and is often referred to as product repressurization. In multi-zone systems, there are typically additional steps and those noted above may be done in stages. U.S. Pat. No. 3,176,444 (Kiyonaga), U.S. Pat. No. 3,986,849 (Fuderer et al.) and U.S. Pat. Nos. 3,430,418 and 3,703,068 (both issued to Wagner), among others, describe multi-zone, adiabatic PSA systems employing both countercurrent and countercurrent depressurization and the disclosures of these patents are incorporated by reference in their entireties. The above-mentioned patents to Fuderer et al. and Wagner are herein incorporated by reference.
Various classes of adsorbents are known to be suitable for use in PSA systems, the selection of which is dependent upon the feedstream components and other factors generally known to those skilled in the art. In general, suitable adsorbents include molecular sieves, silica gel, activated carbon, and activated alumina. For some separations, specialized adsorbents can be advantageous. PSA generally employs weak adsorbents and is used for separations wherein the amount of the component to be separated can range from traces to greater than 95 mole percent. PSA systems are preferred when high concentrations of valuable feedstock, products, or reusable solvents are to be recovered. A PSA cycle is one in which the desorption takes place at a pressure much lower than adsorption. In some applications, the desorption takes place under vacuum conditions—vacuum swing adsorption (VSA). To overcome the inherent low operating loadings on the weak adsorbent, PSA cycles generally have cycle times that are short—on the order of seconds to minutes—to maintain reasonably sized adsorbent beds.
One of the problems of building modern gas processing facilities is that the size of the facility or the amount of gas to be treated in any one facility is continuing to increase. Capacities of modern gas processing complexes are generally greater than about 110 thousand normal cubic meters per hour (100 million standard cubic feet per day). Most PSA vessels are limited to a diameter which can be transported to a construction site which generally limits the vessels to a diameter of about 4 meters (about 13 feet) and the height of the vessel is limited by the crush strength of the adsorbent particle. For capacities greater than about 110 thousand normal cubic meters per hour (100 million standard cubic feet per day), PSA processes are provided in multiple trains of duplicate equipment such as pumps, heaters, lines, valves, vessels, and compressors.
It is an objective of the present invention to provide a PSA process for very large gas processing units in a single train of equipment.
It is an objective of the present invention to provide a process sequence which overcomes the physical limitations of vessel size and adsorbent strength to permit the processing of large amounts of feed without giving up overall performance of large-scale gas separation systems.
SUMMARY OF THE INVENTION
According to the present invention, a process is provided which overcomes historical limitations to the capacity of PSA units for a wide variety of gas separations. Capacities in excess of about 110 thousand normal cubic meters per hour (100 million standard cubic feet per day) can now be achieved in a single integrated process train. This equipment reduction is enabled by a departure from the accepted principle in the PSA arts that the length of the purge step must be equal to or less than the length of the adsorption step. Applicants have discovered that increasing the purge time relative to the adsorption step can provide for significant increases in capacity with a minimum loss in recovery or performance. The benefit of this discovery is that very large-scale PSA units can now be constructed for a cost significantly lower than the cost of a second parallel train of equipment.
In one embodiment, the present invention is a process for the separation of a non-adsorbable gas from a gas mixture comprising the non-adsorbable gas and an adsorbable gas in a single train PSA zone. The process comprises passing the gas mixture to the single train PSA zone and withdrawing a product gas stream comprising the non-adsorbable gas and a waste gas stream comprising the adsorbable gas. The single train PSA zone has a plurality of adsorption beds wherein each adsorption bed employs an adsorption step, at least three countercurrent equalization steps including a final countercurrent equalization step, a provide-purge step, a countercurrent blow down step, a purge step, at least three countercurrent equalization steps including a final countercurrent equalization step and a repressurization step. Each of the process steps occurs in a sequential manner and are offset in time such that the adsorption step occurs over an adsorption step time, the provide-purge step occurs over a provide-purge step time and a purge step occurs over a purge step time. The purge step time is greater than the adsorption step time, wherein the purge step comprises a step wherein the adsorption bed which is undergoing a purge step is receiving a purge gas from one or more other adsorption beds which are undergoing the provide-purge step and wherein these other adsorption beds are simultaneously providing the purge gas to the adsorption bed undergoing the purge step. At any time, the number of adsorption beds undergoing the adsorption step is exceeded by the number of adsorption beds undergoing the purge step.
In another embodiment, the present invention is a process for the separation of hydrogen from a gas mixture comprising hydrogen, carbon dioxide, and nitrogen in a multiple adsorption bed PSA zone in a single adsorption train. The process comprises passing the gas mixture to the multiple adsorption bed PSA zone and withdraw

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Very large-scale pressure swing adsorption processes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Very large-scale pressure swing adsorption processes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Very large-scale pressure swing adsorption processes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2552904

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.