Vehicle wash apparatus with an adjustable boom

Cleaning and liquid contact with solids – Apparatus – For vehicle or wheel form work

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S198000, C134S181000

Reexamination Certificate

active

06807973

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to automatic vehicle washing systems and, more particularly, to an overhead cleaning platform capable of independent vertical and pivotal positioning of a plurality of nozzles attached thereto.
BACKGROUND OF THE INVENTION
“Brushless” automated vehicle washing systems are commonly utilized to quickly and efficiently clean vehicles without requiring any hand scrubbing or contact between cleaning members and the exterior of a vehicle. Brushless vehicle washing systems utilize jets of pressurized cleaning fluid sprayed from a plurality of nozzles to wash away dirt and grime from the exterior surfaces of a vehicle. In one common type of washing system, the nozzles are commonly arranged in a gantry. The gantry either 1) passes over and around the vehicle or 2) is stationary and the vehicle passes through it. In either instance, the nozzles direct jets of cleaning fluid over most if not the entire exterior surface of the vehicle.
The cleaning efficiency and effectiveness of a vehicle washing system is largely dependent upon two factors: the force at which the pressurized cleaning fluid impinges on the vehicle surface; and the effective area on the vehicle's surface impacted by the pressurized cleaning fluid. In order to effectively clean the entire surface of a vehicle, the cleaning fluid jet must impact the adjacent surface with a requisite amount of force in order to dislodge any dirt or foreign matter resident on the adjacent surface. The amount of force per unit area imparted on the adjacent surface is dependent on several factors including the speed and angle at which the jet of cleaning fluid impacts the adjacent surface. As the distance between the nozzle and the adjacent surface increases, the speed of the cleaning fluid decreases; also the jet begins to fan increasing the impact area on the adjacent surface, thereby spreading the impact force over a greater area, and reducing cleaning effectiveness. Accordingly, those parts of a vehicle that are furthest from the nozzles may not be adequately cleaned.
Typically, gantry-type cleaning systems have the most difficulty cleaning the front and rear of a vehicle, since the nozzles located at the sides and top of the gantry normally direct jets of cleaning fluid parallel or at a very shallow angle to the vehicle's front and rear surfaces. Gantry-type washing systems have been developed wherein overhead nozzles are mounted on moveable platforms that (1) pivot to increase the angle of incidence between the fluid jet and the front and rear surfaces of the vehicle, (2) move vertically to decrease the distance between the nozzles and front and rear surfaces, or (3) both pivot and move vertically. The last type of moveable platform is preferred, wherein the platform maybe lowered to get close to front or rear surfaces and pivoted so that the fluid jets impact the surface at a desired angle.
Despite what type of vehicle washing system is utilized, vehicle owners often desire the option of applying additional specialty solutions to their vehicle, such as spot free rinse solutions and clear solutions. Both of these solutions are relatively expensive when compared to the other liquids used during the wash cycle such as water. Accordingly, it is desirable to minimize waste of the specialty solutions, while maximizing coverage of the vehicle's surface. Current art gantry-systems apply these solutions in a number of ways. Using one method, specialty solutions may be applied through the same high-pressure nozzles that are utilized to apply the cleaning and rinsing solutions. This is undesirable for at least two reasons: one, the specialty solution left in the supply lines must be purged prior to the beginning of the next vehicle wash; and two, the use of a high pressure delivery device might deliver a greater than necessary volume of specialty solution to the vehicle as the gantry traverses the vehicle's length. The result is an inefficient use of the expensive specialty solutions. It is noted that high-pressure delivery of specialty fluid is rarely necessary since specialty solutions are chemical cleaners, not dynamic cleaners; accordingly, the primary goal when applying a specialty solution is simply to obtain complete vehicle coverage.
Another method utilized to apply specialty solutions has been to spray the specialty fluid, often in the form of a foam, onto the sides of the vehicle from discharge openings spaced along vertical dispensing tubes attached to the gantry's side legs. The problem of inefficiency is minimized, since there is no need to purge the dedicated specialty fluid delivery system after each vehicle wash. Unfortunately, these vertically mounted delivery systems have difficulty in delivering solution in a manner that completely covers the top surfaces of a vehicle as there is often little impetus for the applied specialty solution to flow along the horizontal top surfaces of the vehicle, especially when the solution is in the form of a foam.
SUMMARY OF THE INVENTION
An automatic vehicle washing system is described. In one embodiment, a vertically moveable platform is suspended from a left end while being supported from below on the right end. One or more nozzles are coupled with the platform for spraying jets of cleaning fluid onto the surface of a vehicle. Preferably, the left end of the platform is suspended by a belt, cable or chain wherein the belt, cable or chain is slideably coupled to the frame and ultimately connected to the right end of the platform for uniform vertical movement therewith. The right end of the platform is supported by a lift actuator. Accordingly, when the lift actuator is actuated to lift the right end of the platform, the belt, cable or chain slides through the frame coupling and is pulled upwards at its junction with the left end, causing the left end to rise in unison with the right end.
In a preferred embodiment, the lift actuator is pneumatic and in communication with a compressor to provide the pressurized air necessary to lift and lower the platform. A pressurized air tank may be provided to serve as a backup in case of a power failure or car wash system malfunction. The air tank may be coupled to a pneumatic switch which automatically opens and allows pressurized air into the lift actuator to raise the platform to its topmost position should power to the compressor be interrupted. In other embodiments, a mechanical lift actuator that uses a lead screw, a drive screw or a drive belt may be used in place of a pneumatic lift.
Typically, the platform comprises a pivoting boom attached to a reciprocating pivotal actuator. A plurality of cleaning nozzles are coupled with the boom and by pivoting the boom; the angle of the fluid jets emanating from the nozzles can be changed. In a first variation of the pivoting boom, mechanical stops are utilized to set the clockwise and counterclockwise pivoted positions of the boom, thereby varying the angle of the fluid jets off vertical. In a second variation of the pivoting boom, the actuator is utilized in conjunction with a guided follower arm. The follower arm permits a certain amount of pivotal movement of the boom depending on the vertical location of the platform. In a third variation of the pivoting boom, the actuator is capable of pivoting to a plurality of selected orientations and holding the boom at that orientation. As necessary, sensors are utilized to determine the desired pivotal orientation of the boom.
The nozzles may be coupled to the boom in any suitable fashion, although in one embodiment the nozzles are coupled to the boom by way of rotating wand assemblies wherein the nozzles are attached to the ends of one or more wands. In another embodiment, nozzle-tipped wands may reciprocate about a pivot point on the boom. The nozzles may also be directly attached to the boom. The nozzles may be 0-degree nozzles, turbo nozzles, slow rotating turbo nozzles, oscillating nozzles or any other type, or combination thereof.
In the preferred embodiment, one or more low

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle wash apparatus with an adjustable boom does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle wash apparatus with an adjustable boom, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle wash apparatus with an adjustable boom will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3301468

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.