Variable frequency clock control for microprocessor-based...

Electrical computers and digital processing systems: support – Clock control of data processing system – component – or data... – Inhibiting timing generator or component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S322000

Reexamination Certificate

active

06311287

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to computer systems and more particularly to the power subsystems and clock subsystems employed in computer systems.
As it is known in the art, computers have become ubiquitous. In particular, a common type of computer, the so-called “personal computer”, which is based upon microprocessor technology uses a standard microprocessor integrated circuit as the central processor of the computer to provide a system which is portable and generally easily affordable by many types of individuals.
Microprocessors generally are synchronous circuits, that is, they require a repetitive signal, commonly referred to as a clock signal for operation. It is also known that as technology advances, one desire is to provide microprocessors that are capable of operating at higher clock frequencies and have increasing circuit complexity. In a computer system which includes, in addition to the microprocessor, memory and I/O devices, such as an I/O interface coupled to a disk, the other devices in the computer system are typically also synchronous and require generation of clock signals for their operation.
One configuration of a personal computer commonly in use is the so-called “notebook” computer which is a portable computer that operates either under battery power or AC power from an AC power line. When operating under battery power, several problems are associated with so-called notebook computers, particularly those notebook computers which use microprocessors which operate at high clock frequencies and have high levels of circuit complexity. Power consumption increases in proportion to the clock frequency and circuit complexity. Therefore, the power consumption of the microprocessor in such notebook type computers limits the duration of operation under a battery power source between charges.
Moreover, due to the increased power dissipation from the microprocessor, the ability to effectively manage the heat generated from the microprocessor is also a concern since this heat must be dissipated to maintain the microprocessor at an acceptable operating temperature.
In operation of the microprocessor, often long periods of time are consumed as idle time in which the microprocessor is performing no useful work. Thus, even though the processor is in an idle state not performing any useful processing tasks, the processor is consuming power and dissipating heat.
Past attempts to address some of the aforementioned heat and power consumption properties of notebook computers, have included clock control circuits which turn the clock signal off to the microprocessor during periods of time when the computer system is on but the microprocessor is not actively engaged in a processing task.
One problem with this approach is that by turning the clock signal off, certain types of microprocessors may lose information since some of the internal circuitry is dynamic, that is, requires constant refresh. In particular, some complimentary metal-oxide semiconductor-based (CMOS) devices, such as the ALPHA AXP microprocessors manufactured by Digital Equipment Corporation require a minimum clock signal.
A second problem with the above approach when applied to high performance microprocessors having dynamic logic is that it does not take into consideration the temperature of the microprocessor nor the level of processing power required by the microprocessor to adequately perform all of its tasks and still conserve battery charge and maintain an acceptable operating temperature for the microprocessor.
In addition to the power and temperature problems with the aforementioned notebook type of computers, desk top as well as other computer configurations likewise have similar power and temperature considerations. For example, with desk top computers much processor time is spent as idle time, and further often a user of the desk top computer will leave the computer “on” for extended time periods (such as overnight or over a week-end) without performing any useful work. This wastes power which is undesirable from an energy conservation point of view.
SUMMARY OF THE INVENTION
In accordance with the present invention a computer system includes a microprocessor, means for generating a clock signal, said means including means responsive to a control signal for selecting a minimum clock signal frequency value and a maximum clock signal frequency value, and means for adjusting the maximum clock signal frequency value in accordance with operating conditions of the central processor. With such an arrangement, a technique is provided to vary the clock frequency of dynamic circuits such as microprocessors having dynamic logic without loss of data or operation. Further, by providing means to adjust the maximum frequency of operation a technique is provided to permit the microprocessor to run at optimal speeds taking in consideration temperature and power consumption considerations. This advantage is particularly important in portable computers such as notebook computers to conserve battery charge, minimize heat dissipation in the microprocessor, and to minimize the size and weight of the battery used in the notebook for a given operating duration requirement.
In accordance with a further aspect of the present invention, a computer system includes a microprocessor and means for varying a magnitude of a supply voltage fed to the microprocessor in accordance with the temperature of the microprocessor and the operating frequency of the microprocessor. With such an arrangement, when the microprocessor is operating at clock frequencies which permit the microprocessor to operate at a reduced supply voltage, the means for varying the supply voltage can detect this and reduce the voltage thereby saving on power consumption from the battery when in portable notebooks and heat dissipation thus improving the reliability of the microprocessor. This is a particular advantage for saving on power consumption and resulting heat dissipation, since power consumption is typically directly proportional to the square of the supply voltage.
In accordance with a still further aspect of the present invention a computer system includes a microprocessor, means for generating a clock signal, said means including means responsive to a control signal for selecting a minimum clock signal frequency value and a maximum clock signal frequency value. The computer system further includes means for adjusting the maximum clock signal frequency value in accordance with operating conditions of the central processor and means for varying a magnitude of a supply voltage fed to the microprocessor in accordance with the temperature of the microprocessor and the operating frequency of the microprocessor. With such an arrangement, a technique is provided to vary the clock frequency of dynamic circuits such as microprocessors between a minimum clock frequency and an adjustable maximum clock frequency of the microprocessor in accordance with temperature and power consumption considerations. This advantage is particularly important in portable computers such as notebook computers to conserve battery charge, minimize heat dissipation in the microprocessor, and to minimize the size and weight of the battery used in the notebook for a given operating duration requirement. In addition, when the microprocessor is operating at clock frequencies which permit the microprocessor to operate at a reduced supply voltage, the means for varying the supply voltage can detect this condition and reduce the supply voltage to the microprocessor reducing power consumption from the battery and heat dissipation.


REFERENCES:
patent: 4893271 (1990-01-01), Davis et al.
patent: 5142684 (1992-08-01), Perry et al.
patent: 5189314 (1993-02-01), Georgiou et al.
patent: 5287292 (1994-02-01), Kenny et al.
patent: 5452401 (1995-09-01), Lin
patent: 5469561 (1995-11-01), Takeda
patent: 5483102 (1996-01-01), Neal et al.
patent: 5490059 (1996-02-01), Mahalingaiah et al.
patent: 2-83720 (1990-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Variable frequency clock control for microprocessor-based... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Variable frequency clock control for microprocessor-based..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Variable frequency clock control for microprocessor-based... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2552212

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.