Electrical computers and digital processing systems: support – Computer power control – Power conservation
Reexamination Certificate
2002-08-20
2003-08-19
Ray, Gopal C. (Department: 2181)
Electrical computers and digital processing systems: support
Computer power control
Power conservation
C713S322000
Reexamination Certificate
active
06609211
ABSTRACT:
STATEMENTS REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
REFERENCE TO A MICROFICHE APPENDIX
Not applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to battery powered computer systems, and more particularly, to circuits and methods for reducing the power consumption of the computer system.
2. Description of the Related Art
Portable computer systems are rapidly developing the capabilities of conventional desktop or floor mounted personal computer systems. Hard disk units are being integrated into portable computers because of the large amounts of information being processed and the large size of many application programs. A floppy disk unit is integrated in the vast majority of portable computers, even if a hard disk unit is installed, to allow loading of information and use of applications requiring key disks, and also to allow use of diagnostic programs. Modems have been integrated into portable computers for some time to allow communications and information transfer between the user and a remote location, for example, the home office. The displays in portable computer systems are becoming much more elaborate and readable. The pixel count on the standard liquid crystal displays (LCD's) utilized is increasing, as is the viewing angle. The use of backlighting allows use of LCD's in low light environments and improves the contrast ratio of the display. More complex circuitry is being installed in portable computers to support these improved peripheral devices and to support the increased speeds and capabilities of the microprocessors utilized in portable computer systems.
The various peripheral devices and high speed circuitry mentioned above consume large amounts of power when operating. This has resulted in problems in portable computer systems because these systems are generally desired to be used in locations where alternating current is not available. This has made it very difficult to provide all the possible functionality available and yet have an acceptable battery life when the portable computer system is battery powered. Using CMOS components helped reduce the power consumption of the circuitry, but even the use of CMOS components is insufficient at the clock speeds and performance levels of available circuitry. Therefore a dilemma arises whether to provide lesser functionality with longer battery life or greater functionality with lesser battery life or even no battery operation.
Various alternatives were tried to resolve the problem. For example, the International Business Machines (IBM) Corporation PC Convertible included a switch which the user could press to place the computer system in a standby mode. However, the PC convertible was relatively simple, with a low level of functionality as compared to what is currently available, and the requirement of a user action to reduce power consumption limited its use to circumstances where the user remembered to depress the switch. Blanking the display after a period of keyboard inactivity saved power as well as prolonged the life of the display and was widely utilized. A hard disk unit was developed which reduced the power used by the controlling electronics by utilizing only certain portions of the track for servo information and turning off the read channel circuitry until just before a servo burst was expected. Additionally, a programmable value could be provided to the hard disk unit so that after a given inactivity interval defined by this value, the hard disk unit was allowed to spin down and all but some interface circuitry was shut down. While these alternatives did provide some relief, they were not complete solutions to satisfactorily resolve the dilemma, and design tradeoffs still were forced to occur.
U.S. Pat. No. 4,980,836 to Carter et al. discloses an apparatus for reducing power consumption in computer systems. The apparatus monitors the address bus to determine when selected peripheral devices have not been accessed for a preset amount of time. When the preset amount of time has passed, the system powers itself down and disables the system clock, placing the system in a standby mode. The system clock could be stopped in this invention because the preferred embodiment of this invention used a static CMOS processor and chip set. If there was sufficient energy in the batteries, the system could be awakened by the user depressing a standby switch. Computer systems which do not use a static CMOS processor or chip set generally reduce the clock frequency when a preset amount of time of address bus inactivity has passed. Reducing the clock frequency during inactive periods reduces power consumption during this time. However, the frequency of peripheral device accesses is not a completely reliable indicator of inactivity of a computer system. Thus, in some instances the system clocking signal may be reduced in frequency or disabled during a period of high computer system activity. Therefore, a method is needed whereby other elements or events of the computer system can be monitored to more reliably determine the activity level of the computer system so that the system clock can properly be adjusted to reduce power consumption.
BRIEF SUMMARY OF THE INVENTION
A battery powered computer system according to the present invention determines when the system is not in use by monitoring various events associated with the operation of the computer system. In the preferred embodiment, the system monitors the number of cache read misses and write operations, i.e., the cache hit rate, and reduces the system clock frequency when the cache hit rate rises above a certain level. When the cache read hit rate is above a certain level, then it can be assumed that the processor is executing a tight loop, such as when the processor is waiting for a key to be pressed. In an alternate embodiment of the invention, the system monitors other events in addition to, or instead of, the cache read hit rate, such as the occurrence of page hits or input/output (I/O) write cycles, to determine the level of activity of the computer system.
The system according to the preferred embodiment includes a frequency switching circuit, an event counter, and a periodic timer. The event counter is preferably used to measure the incidence of cache read misses and write operations and may also optionally be used to count the number of page misses and memory or I/O writes as desired. The event counter includes an overflow or carry line which prevents any further incrementing of the counter once the maximum number of counts is reached to prevent the counter from overflowing. The periodic timer instructs the CPU via a system interrupt to periodically monitor and compare the contents of the event counter. Every event increments the counter and, the more events, the more processor activity that is presumed. When the periodic timer issues a system interrupt, the CPU reads the contents of the counter and compares the event activity with a predetermined value. If the number of events is higher than the predetermined value, then the processor switches the operating frequency of the system to a high frequency if the system is not already operating at this high frequency. A lower event count causes the frequency switching circuit to switch to a lower frequency to conserve power if the system is not already operating at this low frequency.
The invention allows the battery powered operating period of a computer system to be greatly extended without requiring any input from the user and without any noticeable loss in processing power. This allows a battery powered computer system to have advanced capabilities and functionality while still having a satisfactory battery operating interval.
REFERENCES:
patent: 4085449 (1978-04-01), Walsh et al.
patent: 4317181 (1982-02-01), Teza et al.
patent: 4417320 (1983-11-01), Ei
patent: 4531826 (1985-07-01), Stoughton et al.
patent: 4670837 (1987-06-01), Sheets
patent: 4698748 (1987-10-01), Juzswik et al.
patent: 4819164 (1989-04-01), Branson
patent: 4980836 (1990-
LandOfFree
Utilization-based power management of a clocked device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Utilization-based power management of a clocked device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Utilization-based power management of a clocked device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3112291