Using RTC wake-up to enable recovery from power failures

Electrical computers and digital processing systems: support – Computer power control – Having power source monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06408397

ABSTRACT:

BACKGROUND
This invention relates to the field of computers, and particularly to uninterruptible power supplies.
When an uninterruptible power supply (“UPS”) system has detected a power loss, it can notify the computer to power down, via a communications mechanism such as USB or a serial port. The UPS driver can then perform an orderly shutdown on battery-supplied AC power, and power down the system before the battery-supplied AC power is lost. The problem is that when AC power is restored, there is no way for the computer to recognize that it should return to the “power on” state, because the computer was previously in a power off state when battery power expired.
Attempts to have been made to provide an uninterruptible supply of power to computer systems. In U.S. Pat. No. 4,763,333 a device for preventing unintentional loss of data in a computer system a a result of electrical power interruption comprises a standby power supply, a monitor circuit for generating signals when the main power is interrupted and restored and for monitoring the condition of the uninterruptible supply, and an auxiliary memory circuit. The memory circuit includes a large non-volatile or continuously powered memory and a program stored in ROM which takes over control of the computer and is executed by the CPU when a power interruption is signaled by the monitor circuit. The program allows operations already in progress to be completed and then directs a transfer of the computer's operating state and any application programs and operating system from the computer's RAM to the memory circuit's auxiliary memory. When main power is restored, the ROM program directs the CPU to reload the application programs and operating system into the computer's RAM and to restore the state of the CPU.
In U.S. Pat. No. 4,980,836, a battery powered computer system monitors the address bus to determine when selected peripheral devices have not been accessed for a preset amount of time. When the preset amount of time has passed, the system powers itself down and stops the system clock, placing it in a standby mode. The system is awakened by depressing a standby switch, unless there is insufficient energy in the batteries, under which circumstances an AC power source must be connected before the system can be awakened.
U.S. Pat. No. 5,283,905 discloses a power supply for a computer system manager, wherein the power supply has its own secondary power source operable when input power to the system manager no longer meets preset threshold values. The power supply functions in one of the discrete number of power modes depending upon the amount of energy available from either the computer input power or the secondary power source. The power supply switches to one of the group of power modes to conserve secondary power when the computer input power is no longer available. The power modes are controlled by a power mode controller which selectively directs power to discrete components of the system manager as a power conservation technique. The power mode controller always energizes the random access memory of the system manager in order to maintain data integrity. Upon detecting insufficient energy within the secondary power source, the power mode controller terminates all power flow from the power supply, including power flow to the random access memory, at which point the entire system has lost all data and configuration settings.
In U.S. Pat. No. 5,410,713, a power management system for a personal computer comprises a power management processor, a switchable power supply and a keep alive power supply. The processor is powered by the keep alive power supply that continuously provides power. The computer is powered by a power supply that is switchable in response to a control signal. The processor preferably controls the switchable power supply. The processor is coupled to receive external device interrupts from a plurality of external devices that instruct the processor when to turn the switchable power supply on and off. The processor is also coupled to the computer through an interface.
In U.S. Pat. No. 5,497,490, information associated with the adapter unit configuration existing when system power was last turned off is stored in both a non-volatile RAM (NVRAM) and in a reserved area of a hard disk drive (HDD) which holds information associated with both the presently existing adapter configuration and previously existing configurations. Detected ID's of currently connected adapter units are compared first to identity information in the NVRAM, and if a match is detected the associated state information in the NVRAM is used to initialize the currently connected adapter units. If a mismatch is detected, the detected unit ID's are compared to sets of ID's contained in index functions stored in the HDD. If a match is found in this comparison, configuration state information associated with the respective index function is retrieved, written to the NVRAM and applied to the currently connected adapter units.
U.S. Pat. No. 5,548,763 discloses a computer system having four states of power management: a normal operating state, a standby state, a suspend state, and an off state. The standby state is characterized by devices, such as a video controller and a hard drive, being placed into a low-power mode transparent to the operating system and the applications executing on the computer system. The suspend state is characterized by executing code being interrupted and the state of the computer system being saved to a file on the hard drive in such a manner that system power may be removed after the state of the computer system is saved to the hard drive. Later, after system power is restored, the state of the computer system is resumed by reading from the hard drive and loading it in such a manner that the operating system and application programs are not adversely affected. The normal operating state and the off state correspond to the typical on and off states of more conventional computer systems.
U.S. Pat. No. 5,603,038 discloses a computer system having a CPU, a non-volatile storage device, a power management processor having a volatile power management configuration, and a power supply in circuit communication. Responsive to the AC power to the power supply being interrupted, the CPU restores the volatile power management configuration to the power management processor. The power management configuration comprises a value corresponding to a wake alarm and whether the power management processor responds to external events.
U.S. Pat. No. 5,708,820, discloses a network hibernation system for use with a computer connected to a local area network (LAN) which is capable of retaining both data from the computer and data from the network environment created in connection with a LAN in the event of a power failure and also in the event that the computer is idle for a predetermined time period. Upon the restoration of power, the states of the computer and network hibernation system are resumed to the point before the occurrence of the power failure or the idle period.
In U.S. Pat. No. 5,710,930, a method of allowing an operating system of a computer system to persist across a power off and on cycle is described. The method includes the step of detecting if the computer system is to be powered off. If the computer system is detected to be powered off, the state of the computer system is then preserved by storing data representing the state of the computer system in a designated area of a nonvolatile memory of the computer system. A system initialization code of the operating system is then replaced with a new system initialization code that branches to a restart code that accesses to the designated area of the nonvolatile memory such that when the computer system is again powered on, the restart code accesses the designated area of the nonvolatile memory for the data to restore the computer system to the state before the computer system was powered off.
U.S. Pat. No. 5,715,465 discloses a last power state

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Using RTC wake-up to enable recovery from power failures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Using RTC wake-up to enable recovery from power failures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Using RTC wake-up to enable recovery from power failures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2943376

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.