Useful mutations of bacterial alkaline protease

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435 691, 435220, 435221, 4352523, 43525231, 4353201, 4351723, 536 232, 510300, C12N 956, C12N 950, C12N 954, C11D 3386

Patent

active

057416940

ABSTRACT:
The present invention relates to mutations of the subtilisin gene, some of which result in changes in the chemical characteristics of subtilisin enzyme. Mutations are created at specific nucleic acids of the subtilisin gene and, in various specific embodiments, the mutant enzymes possess altered chemical properties including, but not limited to, increased stability to oxidation, augmented proteolytic activity, and improved washability. The present invention also relates, but is not limited to, the amino acid and DNA sequences for two proteases derived from Bacillus lentus variants, subtilisin 147 and subtilisin 309, as well as mutations of these genes and the corresponding mutant enzymes.

REFERENCES:
patent: 3723250 (1973-03-01), Aunstrup et al.
patent: 4760025 (1988-07-01), Estell et al.
patent: 4914031 (1990-04-01), Zukowski et al.
patent: 4980288 (1990-12-01), Bryan et al.
Wright, C.S., et al., Nature, vol. 221, "Structure of subtilisin BPN' at 2.5A resolution", pp. 235-241, 1969.
Stauffer, C.E., et al., The Journal of Biological Chemistry, vol. 344, "The effect on subtilisin activity of oxidizing a methionine residue", pp. 5333-5338, 1969.
Alden, R. A., et al., Philosophical Transactions of the Royal Society of London, Series B, vol. 257, "A hydrogen-bond network at the active site of subtilisin BPN'", pp. 119-124, 1970.
Kraut, J., et al., Cold Spring Harbor Symposia on Quantitative Biology, vol. 36, "The aromatic substrate binding site in subtilisin BPN' and its resemblance to chymotrypsin", pp. 117-123, 1971.
Robertus, J. D., et al., Biochemical and Biophysical Research Communications, vol. 42, "On the identity of subtilisins BPN' and Novo", pp. 334-339, 1971.
Drenth, J., et al., European Journal of Biochemistry, vol. 26, "Subtilisin Novo--The three-dimensional structure and its comparison with subtilisin BPN'", pp. 177-181, 1972.
Robertus, J. D., et al., Biochemistry, vol. 11, "An X-ray crystallographic study of the binding of peptide chloromethyl ketone inhibitors to subtilisin BPN'", pp. 2439-2449, 1972.
Robertus, J. D., et al., Biochemistry, vol. 11, "Subtilisin; a stereochemical mechanism involving transition-state stabilization", pp. 4293-4303, 1972.
Barker, W. C., et al., in Atlas of Protein Sequence and Structure, Dayhoff, M. O., Ed., vol. 5, "Detecting distant relationships: Computer methods and results", pp. 101-110, National Biomedical Research Foundation, Publ., Washington, D.C., 1972.
Kurihara, M., et al., The Journal of Biological Chemistry, vol. 247, "Subtilisin amylosacchariticus", pp. 5619-5631, 1972.
Poulos, T. L., et al., The Journal of Biological Chemistry, vol. 251, "Polypeptide halomethyl ketones bind to serine proteases as analogs of the tetrahedral intermediate", pp. 1097-1103, 1976.
Voordouw, G., et al., Biochemistry, vol. 15, "Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal energy.", pp. 3716-3723, 1976.
Svendsen, Ib, Carlsberg Research Communications, vol. 41, "Chemical modifications of the subtilisins with special reference to the binding of large substrates. A review.", pp. 237-291, 1976.
Wells, J. A., et al., Nucleic Acids Research, vol. 11, "Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis", pp. 7911-7925, 1983.
Phillipp, M., et al., Molecular and Cellular Biochemistry, vol. 51, "Kinetics of subtilisin and thiolsubtilisin", pp. 5-32, 1983.
Brot, N., et al., Archives of Biochemistry and Biophysics, vol. 223, "Biochemistry and physiological role of methionine sulfoxide residues in proteins", pp. 271-281, 1983.
Hirono, S., et al., Journal of Molecular Biology, vol. 178, "Crystal structure at 2.6A resolution of the complex of subtilisin BPN' with Streptomyces subtilisin inhibitor", pp. 389-413, 1984.
Pahler, A., et al., The EMBO Journal, vol. 3, "Three-dimensional structure of fungal proteinase K reveals similarity to bacterial subtilisin", pp. 1311-1314, 1984.
Einspahr, H., et al., in Metal Ions in Biological Systems, Sigel, H., Ed., "Crystal structure studies of calcium complexes and implications for biological studies", pp. 51-97, Marcel Dekker, Inc., Publ., New York, NY, 1984.
Estell, D. A., et al., World Biotechnology Report, vol. 2 "Site-directed mutagenesis of the active site of subtilisin BPN'", pp. 181-187, 1984.
Jany, K.-D., et al., Biological Chemistry Hoppe-Seyler, vol. 366, "Proteinase K from Tritirachium album limber", pp. 485-492, 1985.
Estell, D. A., et al., The Journal of Biological Chemistry, vol. 260, "Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation", pp. 6518-6521, 1985.
McPhalen, C. A., et al., FEBS Letters, vol. 188, "Crystal and molecular structure of the inhibitor eglin from leeches in complex with subtilisin Carlsberg", pp. 55-58, 1985.
Thomas, P. G., et al., Nature, vol. 318, "Tailoring the pH dependence of enzyme catalysis using protein engineering", pp. 375-376, 1985.
Bode, W., et al., The EMBO Journal, vol. 5, "Refined 1.2A crystal structure of the complex formed between subtilisin Calsberg and the inhibitor eglin c. Molecular structure of eglin and its detailed interaction with subtilisin", pp. 813-818, 1986.
Wells, J. A., et al., Philosophical Transactions of the Royal Society of London, vol. 317, "Importance of hydrogen-bond formation in stabilizing the transition state of subtilisin", pp. 415-423, 1986.
Estell, D. A., et al., Science, vol. 233, "Probing steric and hydrophobic effects on enzyme substrate interactions by protein engineering", pp. 659-663, 1986.
Bryan, P. N., et al., Proteins: Structure, Function, and Genetics, vol. 1, "Proteases of enhanced stability: Chaacterization of a thermostable variant of subtilisin", pp. 326-334, 1986.
Bryan, P., et al., Journal of Cellular Biochemistry, Supplement 10, Part A, "Protein engineering of subtilisin: Proteases of enhanced stability", pp. 271, Abstract No. E101, 1986.
Wells, J. A., et al., Journal of Cellular Biochemistry, Supplement 10, Part A, "Subtilisin: A model for protease engineering and secretion," p. 246, Abstract No. E29, 1986.
Bryan, P., et al., Proceedings of the National Academy of Sciences, U.S.A., vol. 83, "Site-directed mutagenesis and the role of the oxyanion hole in subtilisin", pp. 3743-3745, 1986.
Pantoliano, M. W., et al., Biochemistry, vol. 26, "Protein engineering of subtilisin BPN': Enhanced stabilization through the introduction of two cysteines to form a disulfide bond", pp. 2077-2082, 1987.
Mitchinson, C., et al., Journal of Cellular Biochemistry, Supplement 11, Part C, "Engineered disulfide bonds in subtilisin", p. 245, Abstract No. N516, 1987.
Estell, D. A., et al., Journal of Cellular Biochemistry, Supplement 11, Part C, "Tailoring enzymatic properties through multiple mutations", p. 200, Abstract No. N024, 1987.
Wells, J. A., et al., Proceedings of the National Academy of Sciences, U.S.A., vol. 84, "Recruitment of substrate specificity properties from one enzyme into a related one by protein engineering", pp. 5167-5171, 1987.
Cunningham, B. C., et al., Protein Engineering, vol. 1, "Improvements in the alkaline stability of subtilisin using an efficient random mutagenesis and screening procedure", pp. 319-325, 1987.
Russell, A. J., et al., Journal of Molecular Biology, vol. 193, "Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering", pp. 803-813, 1987.
Wells, J. A., et al., in Protein Engineering, Oxender, D. L. et al., Eds., "Protein engineering of subtilisin", pp. 279-287, Alan R. Liss, Inc., Publ., New York, NY, 1987.
Sternberg, M. J. E., et al., Nature, vol. 330, "Prediction of electrostatic effects of engineering of protein charges", pp. 86-88, 1987.
Bott, R., et al., in Biotechnology in Agricultural Chemistry, LeBaron, H., et al., Eds., "Importance of conformational variability in protein engineering of subtilisin", pp. 139-147, American Chemical Society, Publ., 1987.
Carter, P., et al., Nature, vol. 332, "Dissecting the catalytic triad of a serine protease", pp. 394-398, 1988.
Betz

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Useful mutations of bacterial alkaline protease does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Useful mutations of bacterial alkaline protease, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Useful mutations of bacterial alkaline protease will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2056943

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.