Multiplex communications – Communication techniques for information carried in plural... – Adaptive
Reexamination Certificate
1999-08-16
2004-05-25
Pham, Chi (Department: 2667)
Multiplex communications
Communication techniques for information carried in plural...
Adaptive
Reexamination Certificate
active
06741610
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates in general to apparatus and methods for protocol conversion between telephony systems, such as advanced intelligent networks, having incompatible telephony signaling protocols. In particular, the present invention relates to a configurable, universal signaling protocol converter, a system or network having such a protocol converter and a method of protocol conversion that enables communication between signaling protocols of two or more pieces of telephony equipment.
BACKGROUND OF THE INVENTION
In the past decade, the pace of deregulation of the telecommunications markets around the world has accelerated rapidly. Federal telecommunications liberalization legislation in the United States, the European Community's mandate that its member nations liberalize their telecommunications markets by January 1998, and the World Trade Commission's agreement on freeing trade in telecommunication's markets world wide have combined to result in a period of unprecedented growth in the global telecommunications market. New carriers are being created to compete against the old monopolies, established monopolies and carriers are merging and forming joint ventures to create global giants, and fringe market players (resellers and call back operators) are expanding their product lines and extending into new markets.
As carriers build new networks and extend existing networks to new markets, they are encountering many technological challenges which they did not face when they operated only in a single, domestic, market. One of the most significant challenges is that of managing the myriad of communications network protocols which are used in different markets. Telecom operators must interface with a variety of customer Private Branch eXchange (PBX) equipment, and must also interconnect with other operators for access and egress. Today, there are between 35 to 50 variants of base protocols. The ability of the new entrants to support customer access, local, long distance and international protocols often determines their ability to compete successfully.
Communications protocols are the “languages” that allow telecommunication equipment (switches, routers, customer premise equipment, etc.) to communicate with each other. It is essential for a new carrier to be able to support the protocols of its customers, to provide access for their existing Customer Premises Equipment (CPE), and the other networks with which it must interconnect, via switch to switch interconnections. Moreover, the creation of more advanced services, such as Intelligent Networking, requires that communication's protocols contain increasingly detailed information and the migration towards ATM (Asynchronous Transfer Method) network backbones requires the capability to support voice network protocols through data networks.
The technical solutions to this problem, that are available today, have not sufficiently met the requirements of the network operators. Traditionally, network service providers have supported protocols directly on the network switches. This was an adequate solution when the carriers operated only in a single market, but as they expand, their switches do not support the new protocols and the development time and cost for adding all required protocols to their switches are prohibitive. Voice protocol conversion solutions available in the past have been managed on a one-to-one basis which result in small, hardware based solutions. These solutions are inflexible, have limited scalability, are unstable, and do not operate as truly integrated parts of the carrier's network.
One example of the problems with the prior art is in a connection between a protocol used by Deutsche Telekom AG and another protocol, such as G
1
. When a party using the protocol of Deutsche Telekom AG generated a call signal and the other protocol generated a busy signal, the Deutsche Telekom AG threw away the busy signal and continued to generate the ring signal to the calling party. Rather than change their protocol, Deutsche Telekom AG used a mechanical solution of monitoring the tone.
Another example of a problem with conventional equipment arises when large multinational corporations use a first protocol, such as DPNSS, to provide a “call hold” between the company's PBX's using leased trunk lines. However, these trunks cannot be extended across national boundaries due to high expense, national regulations, and incompatible service providers. The telecom service provider used by the company determines that each country supports a similar, but not exact, Integrated Services Digital Network (ISDN) public facility signaling system. Both systems, for example, are compliant with ITU Q.931, but use two network-dependent fields in a different manner. The requirements for connectability then become:
1. Convert a DPNSS “call hold” message sequence to an ISDN message sequence for Country A;
2. Convert ISDN messages in Country A format to ISDN messages in country B format; and
3. Convert ISDN messages in Country B format to DPNSS for deliver to the remote PBX.
Consequently, a convoluted, multi-conversion process must be implemented.
Accordingly, there exists a need for a universal, simplified, but easily configurable protocol converter which can be used by many different protocol systems; that can be easily configured for new protocols and changes to existing protocols. This need has existed for a long time and has not been solved by the existing equipment.
SUMMARY OF THE INVENTION
The present invention was developed to provide a solution to protocol conversion by providing customers with a flexible, any-to-any, protocol conversion platform which is integrated in the network as a network element. This product is unique in its market and provides telecommunications service providers with new capability to quickly, and in the field, adapt their networks to the needs of a new protocol which facilitates their ability to launch new products and extend into new markets and to compete in the rapidly changing global market environment.
Accordingly, the present invention provides an intelligent signaling protocol converter that, for example, can be used for multiple Common Channel (e.g. C7 or PRI) and Channel Associated Signaling (CAS) protocol conversions and that is designed to support voice to data protocol conversions in its next generation. The present invention is a true network element that is scalable, will operate in a fault environment, and provides interfaces to network management systems typically used in a telephone company central office environment. An advantage of the present invention is that it can be programmed by a customer through an interface that allows the user to build, map, alter and logically convert between multiple protocols. Thus, the present invention offers programmability, flexibility and a dynamic environment not currently provided by traditional protocol conversion alternatives. It eliminates the need for the traditional list of supported protocols commonly associated with switches and one-to-one protocol converters by providing a library of pre-defined protocols and it is relatively easy to add new protocols and protocol variations quickly.
The present invention provides advantages in network applications where it can be used to cost effectively expand a network and deliver central office functionality such as digit manipulation, billing and intelligent network interfaces close to the end user at significantly less cost than PBXs used as network switches. As such, a protocol converter according to the present invention can be paired with any tandem switch as traffic grows and switching becomes desirable. This enables system operators to support all current and future protocols, regardless of switch capability while freeing the switch from CPU-intensive conversion routines. This also eliminates long and costly development typically necessary to accommodate protocols and feature inter-working. As a remote access node, the protocol converter would
Boshkin Anatoly V.
Neighbors Clay H.
Rabinovitch Mikhail
Rednor Fred R.
Turvene David S.
Boakye Alexander O.
Cisco Technology Inc.
Hickman Palermo & Truong & Becker LLP
Pham Chi
LandOfFree
Universal protocol conversion does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Universal protocol conversion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universal protocol conversion will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3209397