Ultrasonic object consolidation

Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S182000, C156S073100

Reexamination Certificate

active

06519500

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to fabrication of objects and prototypes through the sequential deposition of material. More particularly, the invention relates to ultrasonic consolidation.
BACKGROUND OF THE INVENTION
Numerous manufacturing technologies for producing objects by sequentially adding material exist, with the casting of liquid metal being perhaps the oldest such technique. In the past two decades, various processes for fabricating objects to net shape solely through material addition, i.e. without a finishing step such as machining to produce detailed, high-precision features, have been patented and, in a few cases, commercialized.
Most of these additive manufacturing processes either rely on an adhesive, or a solidification process in order to produce a bond between previously deposited material and each incremental volume of material which is added. Although the use of adhesives is convenient, the properties of the adhesive control the properties of the finished object, and this limits the usefulness of such processes in the production of engineering parts and products.
Processes which use solidification transformations result in objects with relatively uniform physical and mechanical properties, because the liquid which is present as each volume of material is added wets the previously deposited material, effectively acting as an adhesive with properties identical to those of the bulk material.
The most commercially successful of these technologies is stereolithography, in which a focused light source (typically an ultraviolet laser) is used to solidify a liquid photocuring polymer. As the laser focal point travels through a vat of liquid polymer, the polymer locally solidifies, and eventually, through appropriate programming of the motion of the focal point, a solid object is built.
Selective laser sintering is another additive manufacturing process in which a laser beam is used. In this process, a bed of solid powder is locally melted by a laser beam traversing over it. The partially melted powder aggregates, producing an object. Direct metal deposition is an improvement over selective laser sintering, and it is the subject of intense research and development around the world. In essence, the process involves the injection of metal powders into a high-power laser beam, while the laser is rastered across a part surface. The powders are melted in the beam, and deposited primarily under the influence of gravity.
Particularly with regard to the production of metal objects, prior-art methods require the presence of liquid metal. Various approaches to the problem include three-dimensional shape melting or shape welding, as described by Edmonds, U.S. Pat. No. 4,775,092, Doyle et al., U.S. Pat. No. 4,812,186, and Prinz et al., U.S. Pat. No. 5,207,371, and laser melting and deposition of powders as described in Lewis et. al., U.S. Pat. No. 5,837,960. Brazing of laminated objects, and closely related to it, infiltration of a low-surface tension and low-melting point alloy to fill voids in objects made by compacting or printing metal powders have also been employed. All of these processes require high temperatures and formation of liquid metals to produce a metal part.
More recently, nickel vapor deposition has been employed as a means of producing nickel shells for net-shape fabrication applications, U.S. Pat. No. 5,470,651. Nickel vapor deposition (NVD) allows thicker shells to be produced as vapor deposition rates are higher than in electroforming (Milinkovic, 1995). However, NVD involves the use of highly toxic gases and requires a specialized reaction chamber. The cost and risk of this technology are both very high.
The presence of liquid metal in a process presents numerous safety and material handling problems. Furthermore, the higher the melting point of the material, the greater these difficulties become. When low melting-point materials, such as solders or tin-based alloys, are used these issues are relatively insignificant. But when engineering materials such as iron, nickel or aluminum-based alloys are employed, these difficulties become important. Safety hazards include fumes, the possibility of metal breakout when reservoirs of liquid metal are required, and high-intensity energy sources and high voltage, when methods such as laser metal deposition, or shape melting are employed. When metal powder is used as a feedstock, as in laser metal deposition, the danger of explosion is very real. Other processes, such as metal spraying to produce net shape objects, result in powder generation as a waste product which may also present an explosion hazard.
The presence of liquid metal in additive manufacturing processes may also detrimentally effect dimensional accuracy of a part when built. The dimensional changes which occur during the liquid-solid transformation in metals are not wholly consistent, and are subject to random noise. This noise results in unpredictable and uncontrollable dimensional inaccuracies in parts built using liquid metal processes, the errors being of the order of 0.001 in to 0.005 in per inch. As part size increases, the errors accumulate, making it impossible to produce accurate parts. Several solutions have been proposed, including the use of a second, subtractive step for addressing the accuracy issues. However, this adds time, cost, and complexity to the process.
Selective laser sintering and laser-aided direct metal deposition are examples of processes which rely on thermal energy which is remotely generated, and transmitted through the object undergoing consolidation to produce a bond. Thermal energy is generated by a laser beam, and transmitted to the metal powder, either in the beam, as in the laser engineered net shaping process, or at the powder bed, as in selective laser sintering, and eventually reaches the location where bonding/consolidation of the growing object occurs.
The transmission of thermal energy results in a number of undesirable side effects. First the process is inefficient in that much more energy must be produced than is needed to produce a joint. Second, the thermal energy is not transported only to the location where it is used. Large volumes of additional material are also heated leading to problems such as residual stresses, curling, the need to cool objects, etc., which have been identified by other inventors. Dimensional accuracy is also difficult to control.
The forging processes now in use for rapid prototyping and tooling generally involve the use of metal powders which are densified under heat, pressure, or both. For example, hot isostatic pressing (HIP) is widely used in the aircraft engine industry. In this process, metal powders are compacted in a can which is subjected to high temperature and pressure. The material creeps to densify fully in the solid state. Cold isostatic pressing, i.e., isostatic high pressure compaction of powders at ambient temperatures can be employed for materials such copper, aluminum and low melting-point alloys. By producing a can of an appropriate shape, a near net-shape object can be formed. Powder forging can also be employed. Powder forging is a high temperature and pressure process conducted in a press in which the load is applied axially to the part rather than isostatically. A drawback of these processes is that they require some form of pattern or tooling, such as a can with a desired shape, or in the case of powder metal tooling, a ceramic or metal mandrel, against which the powders are forged.
The only commercialized low-temperature process for additive manufacturing of engineering scale metal components is electroforming, or plating. This is a very mature technology, which has recently been used to produce shells on near net-shape patterns for objects, usually tooling inserts for injection molding. Electroforming is a very slow process, as it takes up to two weeks to produce a shell 0.25 inches thick in a material such as nickel, which has sufficient strength and wear resistance to be used in permanent tooling. As a result, in rapid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultrasonic object consolidation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultrasonic object consolidation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasonic object consolidation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3149672

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.