Treatment or prophylaxis of diseases caused by pilus-forming bac

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4242411, 4242421, 4242571, 435 737, 435849, A61K 3902, A61K 39108, G01N 33569, C12N 100

Patent

active

061533963

ABSTRACT:
Novel methods for the treatment and/or prophylaxis of diseases caused by tissue-adhering bacteria are disclosed. By interacting with periplasmic molecular chaperones it is achieved that the assembly of pili is prevented or inhibited and thereby the infectivity of the bacteria is diminished. Also disclosed are methods for screening for drugs as well as methods for the de novo design of such drugs, methods which rely on novel computer drug modelling methods involving an approximative calculation of binding free energy between macromolecules. Finally, novel pyranosides which are believed to be capable of interacting with periplasmic molecular chaperones are also disclosed.

REFERENCES:
Allen, B. L. et al. "Nucleotide Sequence and Functions of mrk Determinants Necessary for Expression of Type 3 Fimbriae in Klebsiella pneumoniae." J. Bacteriol., 173, 916-920.
Amit, A. G. et al. "Three-Dimensional Structure of an Antigen-Antibody Comples at 2.8 A Resolution." Science, 230, 747-753, 1986.
Baga, Monica et al. "Biogenesis of E. coli Pap Pili: PapH, a Minor Pilin Subunit Involved in Cell Anchoring and Length Modulation." Cell. 49, 241, 1987.
Bakker, D. et al. "Structure and function of periplasmic chaperone-like proteins involved in the biosynthesis of K88 and K99 fimbriae in enterotoxigenic Escherichia coli." Molec. Microbiol., 5, 875.
Ben-Naim, A. et al. "Solvation thermodynamics of nonionic solutes." J. Chem. Phys., 81, 2016-2027.
Bertin, Yolande, et al. "The ClpE protein involved in biogenesis of the CS31A capsule-like antigen is a member of a periplasmic chaperone family in Gram-negative bacteria." FEMS Microbiol. Lett., 108, 59.
Boobbyer, David N. A. et al. "New Hydrogen-Bond Potentials for Use in Determining Energetically Favorable Binding Sites on Molecules of Known Structure." J. Med. Chem., 32, 1083-1094.
Brint, A. T., et al. "Pharmacophoric pattern matching in files of 3D chemical structures: comparison of geometric searching algorithms." J. Mol. Graphics, 5, 49-56.
Chandler, David et al. "Van der Waals Picture of Liquids, Solids, and Phase Transformations." Science, 220, 787-794.
Chemical Abstracts, RN 149563-08-6 (p. 88, line 2).
Clouthier, Sharon C. et al. "Characterization of Three Fimbrial Genes, sefABC, of Salmonella enteritidis." J. Bacteriol., 175, 2523.
Dodson, Karen W. et al. "Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes." Proc. Natl. Acad. Sci. 1993, 90, 3670-3674.
Galyov, E. E. et al. "Expression of the envelope antigen F1 of Yersinia pestis is mediated by the product of caflM gene having homology with the chaperone protein PapD of Escherichia coli." FEBS Lett., 286, 79.
Gerlach, Gerald-F. et al. "Identification and Characterization of the Genes Encoding the Type 3 and Type 1 Fimbrial Adhesins of Klebsiella pneumoniae." J. Bacteriol., 171, 1262-70.
Gething, Mary-Jane et al. "Protein folding in the cell." Nature, 355, 33, 1992.
Goodford, P. J. "A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules." J. Med. Chem., 1985, 28, 849-857.
Hirschmann, Ralph et al. "Nonpeptidal Peptidomimetics with a .beta.-D-Glucose Scaffolding. A Parial Somatostatin Agonist Bearing a Close Structural Relationship to a Potent, Selective Substance P Antagonist." J. Am. Chem. Soc. 1992, 114, 9217-9218.
Holmgren, Anders et al. "Preliminary X-ray Study of PapD Crystals from Uropathogenic Escherichia coli." J. Mol. Biol. 203, 279, 1988.
Holmgren, Anders et al. "Crystal structure of chaperone protein PapD reveals an immunoglobulin fold." Nature 342, 249, 1989.
Holmgren, Anders et al. "Conserved immunoglobulin-like features in a family of periplasmic pilus chaperones in bacteria." The EMBO Journal, 11, 4, 1617-1622.
Hultgren, Scott J. et al. "The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus." Proc. Natl. Acad. Sci. USA, 86, 4357.
Hultgren, Scott J. et al. "Chaperone-Assisted Assembly and Molecular Architecture of Adhesive Pili." Annu. Rev. Microbiol., 45, 383-415.
Hallgren, Christer et al. "Synthesis of a Site-Specific Deuterium Substituted Methyl-.beta.-D-glucan decasaccharide." J. Carbohydr. 12 (3), 309-333.
Iriate, Maite et al. "The Myf fibrillae of Yersina enterocolitica." Mol. Microbiol., 9, 507.
Jalajakumari, M. B. et al. "Genes for biosynthesis and assembly of CS3 pili of CFA/II enterotoxigenic Escherichia coli: novel regulation of pilus by bypassing an amber codon." Mol. Microbiol., 3, 1685.
Jorgensen, William L. "Optimized Intermolecular Potential Functions for Liquids Alcohols." J. Phys. Chem., 90, 1276-1284.
Kawaminami, M. et al. "The Fundamental Structure of Cycasin, (Methyl-ONN-azoxy)methyl .beta.-D-Glucopyranoside." ACTA Crystallogr. Section B 107 (37), 2026, 1981.
Klemm, P. "FimC, a chaperone-like periplasmic protein of Escherichia coli involved in biogenesis of type 1 fimbriae." Res. Microbiol., 143, 831.
Kuehn, Meta J. et al. "Immunoglobulin-like PapD chaperone caps and uncaps interactive surfaces of nascently translocated pilus subunits." Proc. Natl. Acad. Sci. 88, 10586-10590.
Lam, Kelvin, T. et al. "HSP70 Binds Specifically to a Peptide Derived from the Highly Conserved Domain(1) Region of P53." Biochem and Biophys., Res. Comm. 184, 167, 1992.
Landry, Samuel J. et al. "The Chaperonin GroEL Binds a Polypeptide in a .alpha.-Helical Conformation." Biochemistry, 30, 7359.
Landry, Samuel J. et al. "Different conformations for the same polypeptide bound to chaperones DnaK and GroEL." Nature, 1992, 355, 455.
Lee, Frederick S. et al. "Calculations of antibody-antigen interactions: microscopic and semi-microscopic evaluation of the free energies of binding of phosphyorylcholine analogs to McPC603." Prot. Eng., 5, 215-228.
Lindberg, Frederik et al. "PapD, A Periplasmic Transport Protein in P-Pilus Biogenesis." J. Bacteriol. 171, 6052.
Linder et al., 1993, Genbank, acession No.: M886713.
Locht, Camille et al. "Common accessory genes for Bordetella pertussis filamentous hemagglutinin and fimbriae share sequence similarities with the papC and papD gene families." EMBO J., 11, 3175.
Lund, Bjorn et al. "The PapG protein is the .alpha.-D-galactopyranosyl-(1-->4)-.beta.-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli." Proc. Nat. Acad. Sci. USA, 84, 5898.
Patroni, Joseph J. et al. "The Selective Monobenzylidenation of Some Monosaccharides and Their Derivatives with .alpha.,.alpha.-Dimethoxytoluene." Aust. J. Chem. 1988, 41, 91-102.
Pratt, Lawrence R. et al. "Theory of the hydrophobic effect." J. Chem. Phys, 67, 3683-3704.
Raina, Satish, et al. "Identification and Transcriptional Analysis of the Escherichia coli htrE Operon Which Is Homologous to pap and Related Pilin Operons." J. Bacteriol., 175, 5009.
Roux, Benoit et al. "Molecular Basis for the Born Model of Ion Solvation." J. Phys. Chem., 94, 4683-4688.
Ryu, Seong-Eon et al. "Crystal structure of an HIV-binding recombinant fragment of human CD4." Nature, 348, 419.
Schmoll, Thomas et al. "Complete genetic organization and functional aspects of the Escherichia coli S fimbrial adhesion determinant: nucleotide sequence of the genes sfa B, C, D, E, F." Microb. Pathog., 9, 331.
Slonim, Lynn N. et al. "Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly." EMBO J. 11, 4747-56.
Strauch, Kathryn L. et al. "Characterization of degP, a Gene Required for Proteolysis in the Cell Envelope and Essential for Growth of Escherichia coli at High Temperature." J. Bacteriol. 171, 2689-2696.
de Vos, Abraham M. et al. "Human Growth Hormone and Extracellular Domain of Its Receptor: Crystal Structure of the Complex." Science, 1992, 225, 306.
Wang, Jihuai, et al. "Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains." Nature, 1990, 348, 411.
Warshel, Arieh et al. "Calculations of electrostatic interactions in biological systems and in solutions." 1984, Q. Rev. Biophys., 17, 283-422.
Willems, Rob J. L. et a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Treatment or prophylaxis of diseases caused by pilus-forming bac does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Treatment or prophylaxis of diseases caused by pilus-forming bac, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatment or prophylaxis of diseases caused by pilus-forming bac will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1723818

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.