Adhesive bonding and miscellaneous chemical manufacture – Differential fluid etching apparatus – With microwave gas energizing means
Reexamination Certificate
1999-01-13
2001-08-07
Dang, Thi (Department: 1763)
Adhesive bonding and miscellaneous chemical manufacture
Differential fluid etching apparatus
With microwave gas energizing means
C118S719000, C204S298250, C204S298350
Reexamination Certificate
active
06270619
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a treatment device for subjecting an object to a desired treatment after washing the object, a laser annealing device for annealing an object by laser irradiation, a manufacturing apparatus provided with the treatment device or the laser annealing device, and a manufacturing apparatus for a flat display device.
In manufacturing processes for manufacturing an array substrate of an liquid crystal display panel for use as a flat display device, such as a film forming process, etching process, laser annealing process, etc., substrates are washed before pretreatments in order to secure the cleanness of the substrates, in general. To attain this, a manufacturing apparatus comprises a plurality of treatment devices for carrying out the individual processes and a washing device provided independently of the treatment devices. The substrates, to-be-treated objects, are transported between the washing device and the treatment devices by means of a truck or an AGV (automatic transportation vehicle) in a manner such that they are set in a cassette.
In the case where the treatment devices and the washing device are arranged separately, however, the entire manufacturing apparatus requires a wide installation space, and the substrates are transferred between the devices. Therefore, the transportation takes so much time that the substrates may possibly be soiled and the lead time is long.
Further, the treatment time or Q-time requires management, and introduction of the substrates into each preceding stage is restricted by conditions for each succeeding stage, so that the processing operation of the manufacturing apparatus is complicated as a whole.
In a known laser annealing device for the laser annealing process, a laser is applied to non-single crystalline (amorphous) silicon film formed on a substrate to anneal the silicon layer, thereby forming a polycrystalline silicon film. If the annealing process is carried out in an ambient atmosphere with a high oxygen concentration, for example, in the laser annealing device, the resulting polycrystalline silicon film may possibly be poor in properties.
To avoid this, a novel annealing device is developed and described in Jpn. Pat. Appln. KOKAI Publication No. 9-275080, for example. This device is designed so that a substrate inlet chamber, transfer chamber, annealing chamber, transfer chamber, and substrate outlet chamber are connected in succession by means of gate valves. In this device, a vacuum atmosphere or nitrogen atmosphere is defined in an annealing chamber by means of a vacuum exhaust system. In the annealing chamber, substrates are preheated and irradiated with a laser for annealing.
In the laser annealing device constructed in this manner, however, the vacuum exhaust system is needed to control the atmosphere in the annealing chamber, so that stabilizing the atmosphere takes a lot of time, and each chamber must be composed of the so-called vacuum chamber that is highly airtight, thus entailing an increase in manufacturing costs. Since a large number of chambers are connected in the device, moreover, the device is large-sized, and use of increased transportation mechanism parts for connecting the chambers and transporting substrates results in an increase in number of spots where particles are produced. If laser irradiation is carried out with impurities, such as boron, phosphorus, etc., adhering as particles to the substrates, the characteristics of formed transistors are adversely affected. In applying a laser to the substrates in the vacuum atmosphere or nitrogen atmosphere, moreover, the crystal grain size of non-single crystalline silicon is reduced and the mobility of the transistor characteristics is lowered unless the oxygen concentration of the atmosphere is adjusted to a given value. Furthermore, large quantities of gases are needed to define a predetermined atmosphere, such as a nitrogen atmosphere, in a large-sized chamber for preheating, as well as for annealing, thus entailing an increase in manufacturing costs.
BRIEF SUMMARY OF THE INVENTION
The present invention has been contrived in consideration of these circumferences, and its object is to provide a treatment device capable of preventing contamination of a to-be-treated object and shortening the treatment time, a laser annealing device designed to improve the quality of laser annealing and reduce the manufacturing costs, a laser annealing method, a manufacturing apparatus provided with the treatment device or the laser annealing device, and a manufacturing apparatus for a substrate of a flat display device.
In order to achieve the above object, a treatment device according to the present invention comprises; a stage section carrying a to-be-treated object thereon; a treatment section opposed to the stage section, for subjecting the object to a predetermined treatment; a washing section for washing the object, the washing section being located near to the stage section and the treatment section and deviated from a space between the stage section and the treatment section in a second direction crossing a first direction passing through the stage section and the treatment section; and a transportation mechanism arranged between the stage section and the treatment section for transferring the object between the stage section, treatment section, and washing section and loading the object, washed in the washing section, directly into the treatment section.
According to the treatment device constructed in this manner, the washing section and the treatment section are located adjacent to the stage section, so that the movement of the to-be-treated object can be reduced. In particular, the object washed in the washing section can be loaded directly into the treatment section, so that contamination of the object can be prevented, and the treatment time can be shortened. Since the washing section is situated across the direction of transportation of the object to the treatment section, moreover, the treatment device can be prevented from being unduly elongated in the direction in which the object is loaded into and unloaded from the treatment section.
According to the invention, moreover, the treatment section includes a transportation portion located adjacent to the stage section and one or more individual treatment portions located adjacent to the transportation portion. Thus, the time for the movement of the to-be-treated object can be shorted, and one or more treatments can be carried out for the one washing section.
For example, a treatment device for an excimer laser or a film forming chamber for chemical vapor deposition for forming a non-single-crystalline silicon film is provided as the individual treatment portion.
A laser annealing device according to the invention comprises: an annealing chamber storing a to-be-treated object in a manner such that an atmosphere surrounding a laser irradiation region of the object is kept at a pressure not lower than the atmospheric pressure; laser irradiation means for applying a laser beam to the laser irradiation region of the object stored in the annealing chamber, thereby subjecting the object to laser annealing; and transportation means for loading the object directly into the annealing chamber.
The laser annealing device further comprises a stage section opposed to the annealing chamber and carrying the to-be-treated object thereon and a washing section located adjacent to the stage section and the annealing chamber, for washing the object, and wherein the transportation means includes a transfer robot for transferring the object from the stage section to the washing section and loading the washed object from the washing section directly into the annealing chamber.
Moreover, a method of laser annealing a to-be treated object according to the invention comprises the steps of: loading the object into an annealing chamber; and annealing the object in the annealing chamber by applying a laser to a laser irradiation region of the object in a manner such that an atmospher
Higashijima Takuo
Hirata Noriyuki
Komatsubara Yoshiaki
Shimizu Masatoshi
Suzuki Naoki
Dang Thi
Kabushiki Kaisha Toshiba
Pillsbury & Winthrop LLP
LandOfFree
Treatment device, laser annealing device, manufacturing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Treatment device, laser annealing device, manufacturing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatment device, laser annealing device, manufacturing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2470006