Translated memory protection apparatus for an advanced...

Electrical computers and digital processing systems: memory – Address formation – Address mapping

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C711S206000, C714S006130, C714S053000, C714S723000

Reexamination Certificate

active

06199152

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to computer systems and, more particularly, to methods and apparatus for preventing the misuse of instructions which have been translated from instructions of a first instruction set into another instruction set when instructions of the first instruction set are to be overwritten in memory.
2. History of the Prior Art
There are thousands of application programs which run on computers designed around particular families of microprocessors. The largest number of programs in existence are designed to run on computers (generally referred to as “IBM Compatible Personal Computers”) using the “X86” family of microprocessors (including the Intel® 8088, Intel 8086, Intel 80186, Intel 80286, i386, i486, and progressing through the various Pentium® microprocessors) designed and manufactured by Intel Corporation of Santa Clara, Calif. There are many other examples of programs designed to run on computers using other families of processors. Because there are so many application programs which run on these computers, there is a large market for microprocessors capable of use in such computers, especially computers designed to process X86 programs. The microprocessor market is not only large but also quite lucrative.
Although the market for microprocessors which are able to run large numbers of application programs is large and lucrative, it is quite difficult to design a new competitive microprocessor. For example, even though the X86 family of processors has been in existence for a number of years and these processors are included in the majority of computers sold and used, there are few successful competitive microprocessors which are able to run X86 programs. The reasons for this are many.
In order to be successful, a microprocessor must be able to run all of the programs (including operating systems and legacy programs) designed for that family of processors as fast as existing processors without costing more than existing processors. In addition, to be economically successful, a new microprocessor must do at least one of these things better than existing processors to give buyers a reason to choose the new processor over existing proven processors.
It is difficult and expensive to make a microprocessor run as fast as state of the art microprocessors. Processors carry out instructions through primitive operations such as loading, shifting, adding, storing, and similar low level operations and respond only to such primitive instructions in executing any instruction furnished by an application program. For example, a processor designed to run the instructions of a complicated instruction set computer (CISC) such as a X86 in which instructions may designate the process to be carried out at a relatively high level have historically included read only memory (ROM) which stores so-called micro-instructions. Each micro-instruction includes a sequence of primitive instructions which when run in succession bring about the result commanded by the high level CISC instruction.
Typically, an “add A to B” CISC instruction is decoded to cause a look up of an address in ROM at which a micro-instruction for carrying out the functions of the “add A to B” instruction is stored. The micro-instruction is loaded, and its primitive instructions are run in sequence to cause the “add A to B” instruction to be carried out. With such a CISC computer, the primitive operations within a micro-instruction can never be changed during program execution. Each CISC instruction can only be run by decoding the instruction, addressing and fetching the micro-instruction, and running the sequence of primitive operations in the order provided in the micro-instruction. Each time the micro-instruction is run, the same sequence must be followed.
State of the art processors for running X86 applications utilize a number of techniques to provide the fastest processing possible at a price which is still economically reasonable. Any new processor which implements known hardware techniques for accelerating the speed at which a processor may run must increase the sophistication of the processing hardware. This requires increasing the cost of the hardware.
For example, a superscalar microprocessor which uses a plurality of processing channels in order to execute two or more operations at once has a number of additional requirements. At the most basic level, a simple superscalar microprocessor might decode each application instruction into the micro-instructions which carry out the function of the application instruction. Then, the simple superscalar microprocessor schedules two micro-instructions to run together if the two micro-instructions do not require the same hardware resources and the execution of a micro-instruction does not depend on the results of other micro-instructions being processed.
A more advanced superscalar microprocessor typically decodes each application instruction into a series of primitive instructions so that those primitive instructions may be reordered and scheduled into the most efficient execution order. This requires that each individual primitive operation be addressed and fetched. To accomplish reordering, the processor must be able to ensure that a primitive instruction which requires data resulting from another primitive instruction is run after that other primitive instruction produces the needed data. Such a superscalar microprocessor must assure that two primitive instructions being run together do not both require the same hardware resources. Such a processor must also resolve conditional branches before the effects of branch operations can be completed.
Thus, superscalar microprocessors require extensive hardware to compare the relationships of the primitive instructions to one another and to reorder and schedule the sequence of the primitive instructions to carry out any instruction. As the number of processing channels increases, the amount and cost of the hardware to accomplish these superscalar acceleration techniques increases approximately quadratically. All of these hardware requirements increase the complexity and cost of the circuitry involved. As in dealing with micro-instructions, each time an application instruction is executed, a superscalar microprocessor must use its relatively complicated addressing and fetching hardware to fetch each of these primitive instructions, must reorder and reschedule these primitive instructions based on the other primitive instructions and hardware usage, and then must execute all of the rescheduled primitive instructions. The need to run each application instruction through the entire hardware sequence each time it is executed limits the speed at which a superscalar processor is capable of executing its instructions.
Moreover, even though these various hardware techniques increase the speed of processing, the complexity involved in providing such hardware significantly increases the cost of such a microprocessor. For example, the Intel i486 DX4 processor uses approximately 1.5 million transistors. Adding the hardware required to accomplish the checking of dependencies and scheduling necessary to process instructions through two channels in a basic superscalar microprocessor such as the Intel Pentium® requires the use of more than three million transistors. Adding the hardware to allow reordering among primitive instructions derived from different target instructions, provide speculative execution, allow register renaming, and provide branch prediction increases the number of transistors to over six million in the Intel Pentium Pro™ microprocessor. Thus, it can be seen that each hardware addition to increase operation speed has drastically increased the number of transistors in the latest state of the art microprocessors.
Even using these known techniques may not produce a microprocessor faster than existing microprocessors because manufacturers use most of the economically feasible techniques known to accelerate the operation of existing microprocessors. Consequently, designing

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Translated memory protection apparatus for an advanced... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Translated memory protection apparatus for an advanced..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Translated memory protection apparatus for an advanced... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2548400

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.