Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode
Reexamination Certificate
1999-08-11
2003-10-07
Thomas, Tom (Department: 2811)
Active solid-state devices (e.g., transistors, solid-state diode
Field effect device
Having insulated electrode
C257S408000, C257S410000, C257S412000
Reexamination Certificate
active
06630712
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to integrated circuits (ICs) and methods of manufacturing integrated circuits. More particularly, the present invention relates to a transistor and method of manufacturing the transistor. The transistor is advantageously less susceptible to short channel effects and high leakage current.
BACKGROUND OF THE INVENTION
Integrated circuits (ICs), such as, ultra-large scale integrated (ULSI) circuits, can include as many as one million transistors or more. The ULSI circuit can include complementary metal oxide semiconductor (CMOS) field effect transistors (FETS). The transistors can include semiconductor gates disposed between drain and source regions. The drain and source regions are typically heavily doped with a P-type dopant (boron) or an N-type dopant (phosphorous).
The drain and source regions generally include a thin or shallow extension that is disposed partially underneath the gate to enhance the transistor performance. Shallow source and drain extensions help to achieve immunity to short-channel effects, which degrade transistor performance for both N-channel and P-channel transistors. Short-channel effects are among the most important scaling issues for mainstream CMOS technology and can cause threshold voltage roll-off and drain-inducted barrier lowering. Shallow source and drain extensions and, hence, controlling short-channel effects, are particularly important as transistors become smaller.
Conventional techniques utilize a double implant process to form shallow source and drain extensions. According to the conventional process, the source and drain extensions are formed by providing a transistor gate structure without sidewall spacers on a top surface of a silicon substrate. The silicon substrate is doped on both sides of the gate structure via a conventional doping process, such as, a diffusion process or an ion-implantation process. Without the sidewall spacers, the doping process introduces dopants into a thin region (i.e., just below the top surface of the substrate) to form the drain and source extensions as well as to partially form the drain and source regions.
After the drain and source extensions are formed, silicon dioxide spacers, which abut lateral sides of the gate structure, are provided over the source and drain extensions. The substrate is doped a second time to form the deeper source and drain regions. The source and drain extensions are not further doped due to the blocking capability of the silicon dioxide spacer.
As transistors disposed on integrated circuits (ICs) become smaller, transistors with shallow and ultra-shallow source/drain extensions have become more difficult to manufacture. For example, smaller transistors should have ultra-shallow source and drain extensions (less than 30 nanometer (nm) junction depth). Forming source and drain extensions with junction depths of less than 30 nm is very difficult using conventional fabrication techniques.
Conventional ion-implantation and diffusion-doping techniques make transistors on the IC susceptible to short-channel effects, which result in a dopant profile tail distribution that extends deep into the substrate. Also, conventional ion-implantation techniques have difficulty maintaining shallow source and drain extensions because point defects generated in the bulk semiconductor substrate during ion implantation can cause the dopant to more easily diffuse (transient enhanced diffusion, TED). The diffusion often extends the source and drain extensions vertically into the bulk semiconductor substrate.
Furthermore, as transistors disposed on integrated circuits (ICs) become smaller (e.g., transistors with gate lengths approaching 70 nm or less), source and drain extension depths need to be aggressively reduced to achieve acceptable immunity to the short-channel effect. For example, a transistor having a gate length of less than 70 nm should have an ultra-shallow source/drain extension (e.g., depth of 10-20 nm). However, the formation of the ultra-shallow source/drain extension is very difficult. For example, ultra-shallow source/drain extensions are susceptible to significant dopant loss during the low-KeV implantation, as well as to increased transient-enhanced diffusion (TED), which make the junction depth much deeper. These problems can prevent the manufacture of a ULSI integrated circuit having transistors with gate lengths of less than 50 nm.
Another important factor associated with reduced transistor size relates to transistor leakage current. As the physical length of the gate is reduced to increase the transistor on-state drive current, the spacing between the source and drain extensions becomes closer. The off-state leakage current dramatically increases as the source/drain extensions become closer. Increased off-state leakage current increases the power consumption and heat generated by an integrated circuit.
Thus, there is a need for a transistor that has reduced off-state leakage current and increased on-state drive current. Further still, there is a need for a transistor with the reduced off-state leakage current and with less susceptibility to short-channel effects. Further still, there is a need for source/drain extensions that do not contribute to off-state leakage current. Even further still, there is a need for a method of making a novel transistor structure that is less susceptible to off-state leakage current and, yet, has acceptable on-state drive current.
SUMMARY OF THE INVENTION
One embodiment of the present invention relates to a transistor with dynamic source/drain extensions. The transistor includes a source, a drain, and a gate structure. The gate structure is disposed between the source and the drain and has a T-shaped gate electrode. The T-shaped gate electrode has a first wing and a second wing. Deep inversion layers are formed under the first wing and the second wing when a signal is applied to the T-shaped gate electrode. The deep inversion layers act as dynamic source/drain extensions.
Another embodiment of the present invention relates to an integrated circuit with a transistor having a gate electrode means. The gate electrode structure turns the transistor on in response to a gate signal having a first level and turns the transistor off in response to the gate signal having a second level. The gate electrode structure is configured to form source/drain extensions in response to the first level. The source/drain extensions are absent when the second level is applied to the gate electrode structure.
A further embodiment of the present invention relates to a method of fabricating an integrated circuit on a substrate. The integrated circuit includes at least one transistor with dynamic source/drain extensions. The method includes providing a gate conductor between a source and a drain, providing a dielectric layer over the gate conductor, removing the dielectric layer until a top surface of the dielectric layer is below a top surface of the gate conductor, and depositing a conductive material over the gate conductor and the dielectric layer. The method further includes removing the conductive material to leave a first wing of the conductive material coupled to the gate conductor and a second wing of the connective material coupled to the gate conductor, and removing the dielectric layer to leave spacers beneath the first wing and the second wing.
REFERENCES:
patent: 4714519 (1987-12-01), Pfiester
patent: 5955759 (1999-09-01), Ismail et al.
patent: 6177700 (2001-01-01), Lee
patent: 6204112 (2001-03-01), Chakravarti et al.
patent: 5-243261 (1993-09-01), None
Advanced Micro Devices , Inc.
Foley & Lardner
Thomas Tom
Vu Hung Kim
LandOfFree
Transistor with dynamic source/drain extensions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Transistor with dynamic source/drain extensions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transistor with dynamic source/drain extensions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3155661