Token mechanism for cache-line replacement within a cache...

Electrical computers and digital processing systems: memory – Storage accessing and control – Specific memory composition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C711S133000, C711S134000, C711S146000

Reexamination Certificate

active

06304939

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a cache memory for data storage in general and, in particular, to a cache memory having redundant cache lines. Still more particularly, the present invention relates to a mechanism for cache-line replacement within a cache memory having redundant cache lines.
2. Description of the Prior Art
During manufacturing process, all integrated circuits (ICs) are tested for manufacturing defects. Any IC that is found to be defective will be discarded. In order to improve the yield of the manufacturing process, it is well-known in the industry to include redundant circuits within an IC. For example, multiple redundant rows and columns are often included in memory devices for replacing rows and columns that may be inoperative due to manufacturing defects. Further, a fuse link is commonly connected between the input pin and the internal circuitry of the IC. If a defective location is identified and the defect can be corrected by substituting a redundant circuit for an inoperative circuit within the IC, then the fuse link is disconnected, for example, by laser zapping, to enable a functional redundant circuit over the defective circuit. The manufacturing process is then completed and the IC is packaged to be sold to customers.
For modern microprocessors, on-chip random access memories (RAMs) are commonly employed in cache memory implementations. Moreover, redundant cache lines are also provided within these on-chip cache memories, and the aforementioned technique is utilized to select a redundant cache line when an “original” cache line is found to be defective. As an example, a cache memory having 128 cache lines may be implemented with two redundant cache lines such that the cache memory has an array of 130 cache lines in total. During manufacturing tests, cache line faults within the cache memory are analyzed. If there is no cache line fault found in the cache memory, none of the redundant cache lines will be enabled. However, if there is a cache line fault found, the faulty cache line will be disabled by a set of fuses and one of the two redundant cache lines will be enabled. Thus, the cache memory will exit the manufacturing process with 128 cache lines enabled and two cache lines disabled.
In general, it is useful to have a cache-line replacement scheme that can efficiently utilize the physical design of the cache memory. More importantly, such cache-line replacement scheme should be able to select a cache line that is not currently allocated, and such cache-line replacement scheme should ignore the nonselected redundant lines in an efficient manner. Consequently, it would be desirable to provide a mechanism for cache-line replacement that allocates vacant locations or pseudo-random locations in a cache memory having redundant cache lines.
SUMMARY OF THE INVENTION
In view of the foregoing, it is therefore an object of the present invention to provide an improved cache memory for data processing.
It is another object of the present invention to provide an improved cache memory having redundant cache lines.
It is yet another object of the present invention to provide an improved mechanism for cache-line replacement within a cache memory having redundant cache lines.
In accordance with a preferred embodiment of the present invention, the mechanism comprises a token, a multiple of token registers, multiple allocation-indicating circuits, multiple bypass circuits, and a circuit for replacing a cache line within a cache memory in response to a location of the token. Incidentally, the token is utilized to indicate a candidate cache line for cache-line replacement. The token registers are connected in a ring configuration, and each of the token registers is associated with a cache line of the cache memory, including all redundant cache lines. Normally, one of these token registers contains the token. Each token register has an allocation-indicating circuit. An allocation-indicating circuit is utilized to indicate whether or not an allocation procedure is in progress at the cache line with which the allocation-indicating circuit is associated. Each token register also has a bypass circuit. A bypass circuit is utilized to transfer the token from one token register to an adjacent token circuit in response to an indication from the associated allocation-indicating circuit.
All objects, features, and advantages of the present invention will become apparent in the following detailed written description.


REFERENCES:
patent: 5410697 (1995-04-01), Baird et al.
patent: 5689706 (1997-11-01), Rao et al.
patent: 5852747 (1998-12-01), Bennett et al.
patent: 5889952 (1999-03-01), Hunnicutt et al.
patent: 6041390 (2000-03-01), Liu et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Token mechanism for cache-line replacement within a cache... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Token mechanism for cache-line replacement within a cache..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Token mechanism for cache-line replacement within a cache... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2581733

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.