Active solid-state devices (e.g. – transistors – solid-state diode – Housing or package – For high frequency device
Reexamination Certificate
2001-05-22
2004-07-06
Flynn, Nathan J. (Department: 2826)
Active solid-state devices (e.g., transistors, solid-state diode
Housing or package
For high frequency device
C257S678000, C455S073000
Reexamination Certificate
active
06759743
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to microwave monolithic integrated circuits (MMIC), and more particularly, this invention relates to modules having a microwave monolithic integrated circuit that can be tuned for optimum performance and improved packaging of a MMIC and transceiver module.
BACKGROUND OF THE INVENTION
The recent explosion in wireless telecommunications has increased the demand for high performance millimeter wave radio frequency (RF) modules. One of the major cost and yield drivers for high frequency MMIC modules has been manual tuning to optimize module performance. The majority of MMIC RF amplifiers are not self biased. Therefore, each amplifier requires gate voltage (Vg) adjustment to tune the amplifier to its nominal operating conditions. This tuning normally occurs after the amplifiers have been assembled in the module and are connected to the power supply.
In order to have access to the chips in the module, probe stations are required. In addition, highly skilled operators are necessary to probe these small devices under a microscope. Damage to the chips is very common, even with veteran MMIC technicians. The needle-like probes used in the tuning cost thousands of dollars, and usually have a limited life because of wear and tear. It is estimated that it takes 20 to 30 minutes to probe each amplifier.
Many attempts have been made to automate the probing process, and there has been some limited success. The time and cost, however, involved in designing and using automatic module probing is extensive. In most cases, unique module designs prevent the use of a particular automatic probe station for more than a single module. These drawbacks have presented a challenge to many companies active in designing and manufacturing RF modules. As a result, high frequency modules are not produced in high volume. In most cases, manufacturers are forced to use expensive equipment and a large staff of qualified technicians to manufacture large numbers of RF modules.
Chip packaging for MMIC chips also is increasingly important. MMIC radio frequency modules have never been manufactured in high quantity amounts because the MMIC chips are fragile, typically 2 to about 4 mil thick, and difficult to handle. Air bridges, located over the surface of the chips, make it difficult to pick the chips from the top or exert pressure on the chips.
Special pick-up tools with pick-in-place equipment have been used to automatically pick-in-place the MMIC chips. These tools are expensive to manufacture and usually different MMIC chips require different tools. This has presented a challenge to different manufacturing companies because most automatic pick-in-place machines are limited to a limited number of tools for MMIC chips. In some cases, a manufacturer must use a series of different pick-in-place machines to assemble one radio frequency module. This is inefficient.
These MMIC radio frequency modules also are built in low volume amounts because there are usually a high number of MMIC chips, substrates and peripherals that are installed in each module. For example, a typical millimeter wave transceiver would have about 10 to about 15 MMIC chips, 15-20 pieces of substrate, and about 50-60 other peripheral components, such as resistors and capacitors. There is also a requirement that each of the components be connected via wire or ribbon bonds. This has also presented the challenge to millimeter wave module manufacturing companies.
SUMMARY OF THE INVENTION
A thick film millimeter wave transceiver module includes a base plate. A multi-layer substrate board has a plurality of layers of low temperature transfer tape received on the base plate. The layers comprise at least one of a DC signals layer having signal tracks and connections, a ground layer having ground connections, a device layer having capacitors and resistors embedded therein, and a top layer having cut-outs for receiving MMIC chips therein. A solder preform layer is located between the device layer and the top layer for securing any MMIC chips. A channelization plate is received over the multi-layer substrate board and has channels formed to receive MMIC chips and provide isolation between transmit and receive signals.
In yet another aspect of the present invention, the module can include isolation vias, which extend through multiple layers down to the ground layer. A radio frequency cover is received over the channelization plate. Each of the layers within the multi-layer substrate board can be about 2 to about 4 mil thick. Typically the layers are about 3 mil thick and the top layer is about 4 mil thick. The base plate can be formed from one of copper tungsten or other CTE matched material. The base plate is about 0.1 to about 0.3 inches thick. In yet another aspect of the present invention, the base plate is about 0.125 inches thick.
A method is also disclosed and comprises forming a thick film millimeter wave transceiver module by forming a base plate and forming a multi-layer substrate board having a plurality of layers of low temperature transfer tape. The substrate board is received on the base plate and comprises one of at least a DC signals layer having signal tracks and connections; a ground layer having ground connections; a device layer having capacitors and resistors embedded therein; and a top layer having cut-outs for receiving MMIC chips therein. The MMIC chip is secured by solder.
REFERENCES:
patent: 4453142 (1984-06-01), Murphy
patent: 5049978 (1991-09-01), Bates et al.
patent: 5239685 (1993-08-01), Moe et al.
patent: 5254941 (1993-10-01), Osika
patent: 5319329 (1994-06-01), Shiau et al.
patent: 5386085 (1995-01-01), Miehls et al.
patent: 5406122 (1995-04-01), Wong et al.
patent: 5423080 (1995-06-01), Perret et al.
patent: 5451818 (1995-09-01), Chan et al.
patent: 5545924 (1996-08-01), Contolatis et al.
patent: 5852391 (1998-12-01), Watanabe et al.
patent: 5982250 (1999-11-01), Hung et al.
patent: 6124636 (2000-09-01), Kusamitsu
patent: 6175287 (2001-01-01), Lampen et al.
patent: 6426686 (2002-07-01), Douriet et al.
patent: 6501415 (2002-12-01), Viana et al.
patent: 2003/0043887 (2003-03-01), Hudson
Prabhu et al., “Co-Fired Ceramic on Metal Multichip Modules For Advanced Military Packaging,” Aerospace and Electronics Conference, Proceedings of the IEEE, May 24, 1993, pp. 217-222.
Jayaraj et al., “RF Characterization of a Low Cost Multichip Packaging Technology For Monolithic Microwave and Millimeter Wave Integrated Circuits,” 1995 URSI International Symposium on San Francisco, IEEE, Oct. 25, 1995, pp. 443-446.
Gutierrez et al., “A Thick Film Package for Microwave ICs,” Proceedings of the Electronic Components and Technology Conference, IEEE, May 18, 1992, pp. 151-156.
Allen Dyer Doppelt Milbrath & Gilchrist, P.A.
Mondt Johannes
Xytrans, Inc.
LandOfFree
Thick film millimeter wave transceiver module does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Thick film millimeter wave transceiver module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thick film millimeter wave transceiver module will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3223979