Thermoelectric-enhanced heat exchanger

Refrigeration – Using electrical or magnetic effect – Thermoelectric; e.g. – peltier effect

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S259200, C062S332000, C062S333000, C062S003600, C062S003700

Reexamination Certificate

active

06557354

ABSTRACT:

TECHNICAL FIELD
The present invention is generally directed to cooling systems, and more particularly, to a cooling system employing a heat exchanger with thermoelectric structures disposed between adjacent tubes thereof for enhanced cooling of heat generating components in, for example, an electronic device such as a mainframe computer or other electronic system requiring cooling.
Background of the Invention
As is well known, as the circuit density of electronic chip devices increases in order to achieve faster and faster processing speed, there is a correspondingly increasing demand for the removal of heat generated by these devices. The increased heat demand arises both because the circuit devices are packed more closely together and because the circuits themselves are operated at increasingly higher clock frequencies. Nonetheless, it is also known that runaway thermal conditions and excessive heat generated by chips is a leading cause of failure of chip devices. Furthermore, it is anticipated that the demand for heat removal from these devices will increase indefinitely. Accordingly, it is seen that there is a large and significant need to provide useful cooling mechanisms for electronic circuit devices.
The use of large thermoelectric cooling elements is known. These elements operate electronically to produce a cooling effect. By passing a direct current through the legs of a thermoelectric device, a temperature difference is produced across the device which may be contrary to that which would be expected from Fourier's Law.
At one junction of the thermoelectric element both holes and electrons move away, toward the other junction, as a consequence of the current flow through the junction. Holes move through the p-type material and electrons through the n-type material. To compensate for this loss of charge carriers, additional electrons are raised from the valence band to the conduction band to create new pairs of electrons and holes. Since energy is required to do this, heat is absorbed at this junction. Conversely, as an electron drops into a hole at the other junction, its surplus energy is released in the form of heat. This transfer of thermal energy from the cold junction to the hot junction is known as the Peltier effect.
Use of the Peltier effect permits the surfaces attached to a heat source to be maintained at a temperature below that of a surface attached to a heat sink. What these thermoelectric modules provide is the ability to operate the cold side below the ambient temperature of the cooling medium (air or water). When direct current is passed through these thermoelectric modules a temperature difference is produced with the result that one side is relatively cooler than the other side. These thermoelectric modules are therefore seen to possess a hot side and a cold side, and provide a mechanism for facilitating the transfer of thermal energy from the cold side of the thermoelectric module to the hot side of the module.
Although the use of cooling systems with heat exchangers is known, there continues to be a need for further enhanced cooling of circuit devices considering the ever increasing processing speeds and space constraints.
SUMMARY OF THE INVENTION
The shortcomings of the prior approaches are overcome, and additional advantages are provided, by the present invention which in one aspect comprises a heat exchanger using thermoelectric structures to facilitate cooling of an electronic device. Moreover, it should be understood that a heat exchanger in accordance with the present invention is not limited to cooling electronic devices, but rather, has many applications such as, for example, cooling heat generating mechanical components. For simplicity, the following discussion of a heat exchanger in accordance with an aspect of the present invention is focused on cooling electronic devices, with the understanding that it may be employed in other applications as well.
In one embodiment, the heat exchanger comprises one or more pairs of adjacent spaced passages. The adjacent spaced passages are in fluid communication with an input port of the heat exchanger and are configured to carry a cooling fluid received through the inlet port. The heat exchanger further includes a cooling subsystem configured to remove heat from one or more pairs of the adjacent spaced passages. The cooling subsystem has at least one thermoelectric structure, which is disposed between at least one pair of the adjacent spaced passages.
In another aspect, a heat exchange made in accordance with an aspect of the present invention may be part of a cooling system. The cooling system may include a heat transfer device, which is configured to remove heat from a heat generating component. The input port of the heat exchanger is in fluid communication with the heat transfer device of the cooling system.
In a further aspect, a method of fabricating a heat exchanger for cooling a heat generating component is provided. This method includes: providing one or more pairs of adjacent spaced passages, the adjacent spaced passages being in fluid communication with an input port and being configured to carry a cooling fluid; and disposing a cooling subsystem between at least one pair of the one or more pairs of adjacent spaced passages, the cooling subsystem being configured to remove heat from one or more of the adjacent spaced passages, the cooling subsystem comprising at least one thermoelectric structure.
Various additional enhanced structures and methods are also described and claimed hereinbelow.
Advantageously, by using thermoelectric structures or modules integrated with a heat exchanger comprising part of a fluid-based cooling system, the overall heat removal capability at a given temperature for a given volume and volumetric air flow through the heat exchanger is enhanced.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered part of the claimed invention.


REFERENCES:
patent: 5269146 (1993-12-01), Kerner
patent: 5584183 (1996-12-01), Wright et al.
patent: 5731954 (1998-03-01), Cheon
patent: 5737923 (1998-04-01), Gilley et al.
patent: 5890371 (1999-04-01), Rajasubramanian et al.
patent: 5918469 (1999-07-01), Cardella
patent: 6006524 (1999-12-01), Park
patent: 6058712 (2000-05-01), Rajasubramanian et al.
patent: 6164076 (2000-12-01), Chu et al.
patent: 6166907 (2000-12-01), Chien
patent: 6196003 (2001-03-01), Macias et al.
patent: 6234240 (2001-05-01), Cheon
patent: 6298669 (2001-10-01), Maruyama et al.
patent: 6338251 (2002-01-01), Ghoshal
patent: 6418728 (2002-07-01), Monroe
patent: WO 98/08038 (1998-02-01), None
patent: 4155162 (1992-05-01), None
patent: 11340522 (1999-12-01), None
Ohkubo et al., pending U.S. patent application, Ser. No. 09/740,844, filed Dec. 21, 2000, entitled “Heat Exchanger”, Publication No. US 2001/0013224 A1, publication date Aug. 16, 2001.
Chu et al., pending U.S. patent application entitled “Thermoelectric-Enhanced Heat Spreader For Heat Generating Component Of An Electronic Device”, Ser. No. 09/606,984, filed Jun. 29, 2000.
Chu et al., pending U.S. patent application entitled “Thermal Spreader and Interface Assembly for Heat Generating Component Of An Electronic Device”, Ser. No. 09/606,619, filed Jun. 29, 2000.
Chu et al., pending U.S. patent application entitled “Electronic Module With Integrated Programmable Thermoelectric Cooling Assembly and Method of Fabrication”, Ser. No. 09/726,909, filed Nov. 30, 2000.
Chu et al., pending U.S. patent application entitled “Electronic Module With Integrated Thermoelectric Cooling Assembly”, Ser. No. 09/726,900, filed Nov. 30, 2000.
“Two Stage Cooling System Employing Thermoelectric Modules”, by Chu et al., Ser. No. 10/115,903 co-filed herewith.
Chu et al., pending U.S. patent application entitled “Cooling System With Auxillary Thermal Buffer Unit For Cooling An Electronic Module”, Ser. No. 09/867,855, filed May 30, 2000.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermoelectric-enhanced heat exchanger does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermoelectric-enhanced heat exchanger, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermoelectric-enhanced heat exchanger will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3041243

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.