Thermal digital lithographic printing plate

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S156000, C430S281100, C430S302000, C101S467000

Reexamination Certificate

active

06352812

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to thermal lithographic printing plates which are imaged with an infrared laser and processed with an aqueous alkaline developer.
2. Description of Related Art
U.S. Pat. No. 5,493,971 discloses lithographic printing constructions which include a grained-metal substrate, a protective layer that can also serve as an adhesion-promoting primer, and an ablatable oleophilic surface layer. In operation, imagewise pulses from an imaging laser interact with the surface layer, causing ablation thereof and, probably, inflicting some damage to the underlying protective layer as well. The imaged plate may then be subjected to a solvent that eliminates the exposed protective layer, but which does no damage either to the surface layer or to the unexposed protective layer lying thereunder.
A heat-sensitive imaging element for making positive working lithographic printing plates is disclosed in European Patent Publication EP 0864420 A1. The imaging element disclosed comprises a lithographic base, a layer comprising a polymeric material which is soluble in an aqueous alkaline solution and an IR-radiation sensitive second layer. Upon image-wise exposure and absorption of IR-radiation in the second (top) layer, the capacity of the aqueous alkaline solution to penetrate and/or solubilize the second layer is changed. Image-wise exposure can be performed with an infrared laser with a short as well as with a long pixel dwell time.
Although advances have been made in the preparation of heat-sensitive elements for the production of lithographic printing plates, there remains a need for such elements having improved sensitivity to infrared laser imaging devices. There is also a need for longer shelf-life with wider development latitude and wider exposure latitude.
SUMMARY OF THE INVENTION
These needs are met by the present invention which is a positive-working thermal imaging element comprising;
A. a substrate; and
B. a thermally sensitive composite layer structure having an inner surface contiguous to the substrate and an outer surface, the composite layer structure comprising:
(a) a first layer having the inner surface, the first layer comprising a first polymeric material, wherein the first polymeric material is soluble or dispersible in an aqueous solution; and
(b) a second layer having the outer surface, the second layer comprising a second polymeric material, wherein the second layer is insoluble in the aqueous solution, and wherein when the first layer is free of photothermal conversion material, the second layer is free of photothermal conversion material; wherein, upon heating the composite layer structure, the heated composite layer structure has an increased rate of removal in the aqueous solution.
More particularly, the present invention is a positive-working, lithographic printing plate, precursor comprising;
A. a hydrophilic substrate; and
B. a thermally sensitive composite layer structure having an inner surface contiguous to the hydrophilic substrate and an outer oleophilic surface, the composite layer structure comprising:
(a) a first layer having the inner surface, the first layer comprising a first polymeric material and photothermal conversion material, wherein the first polymeric material is soluble or dispersible in an aqueous solution; and
(b) a second layer having the outer oleophilic surface, the second layer comprising a second polymeric material, wherein the second layer is insoluble in the aqueous solution; wherein, upon heating the composite layer structure, the heated composite layer structure has an increased rate of removal in the aqueous solution.
An added embodiment of this invention is a method for forming a planographic printing plate comprising the steps, in the order given:
I) providing a lithographic printing plate precursor comprising;
A. a hydrophilic substrate; and
B. a thermally sensitive composite layer structure having an inner surface contiguous to the hydrophilic substrate and an outer oleophilic surface, the composite layer structure comprising:
(a) a first layer having the inner surface, the first layer comprising a first polymeric material, wherein the first polymeric material is soluble or dispersible in an aqueous solution; and
(b) a second layer having the outer oleophilic surface, the second layer comprising a second polymeric material, wherein the second layer is insoluble in the aqueous solution, and wherein when the first layer is free of photothermal conversion material the second layer is free of photothermal conversion material;
II) imagewise exposing the composite layer structure to thermal energy to provide exposed portions and complimentary unexposed portions in the composite layer structure, wherein the exposed portions are selectively removable by the aqueous solution; and
III) applying the aqueous solution to the outer oleophilic surface to remove the exposed portions to produce an imaged lithographic printing plate having uncovered hydrophilic areas of the hydrophilic substrate and complimentary ink receptive areas of the outer oleophilic surface. In an added embodiment of the method of this invention, the imaged lithographic printing plate is uniformly exposed to thermal energy after step III.
In a further embodiment of this invention the first layer of the thermal imaging element contains photothermal conversion material and a photohardenable material activatable by ultraviolet radiation. In use, the thermal imaging element of this embodiment is imaged and developed according to the method of this invention to form the imaged lithographic printing plate. The imaged lithographic printing plate is then uniformly exposed to ultraviolet radiation.
In of each of the embodiments of this invention the aqueous solution preferably has a pH of about 6 or greater; the first polymeric material preferably is insoluble in an organic solvent, and the second polymeric material is soluble in the organic solvent; and the first layer preferably contains a photothermal conversion material particularly when the element is imagewise exposed with a radiant source of energy such as an infrared emitting laser. Preferably, the second layer is free of the photothermal conversion material.
DETAILED DESCRIPTION OF THE INVENTION
This invention relates to an imaging element which can be imaged with thermal energy. More particularly, this invention relates to thermal lithographic printing plates, which can be imaged by thermal energy typically by imagewise exposure with an infrared emitting laser, a thermal printing head, or the like. The lithographic plates described in this invention are made up of a hydrophilic substrate, typically an aluminum or polyester support, and adhered thereto, a thermally sensitive composite layer structure typically composed of two layer coatings. An aqueous developable polymeric mixture typically containing a photothermal conversion material is coated on the hydrophilic substrate to form the first layer. The second layer is composed of one or more non-aqueous soluble polymeric materials which are soluble or dispersible in a solvent which does not dissolve the first layer. In the positive-working thermal imaging element of this invention, the term “photothermal conversion material” is intended to be one or more thermally sensitive components which absorb incident radiation and convert the radiation to thermal energy. Typically, the photothermal conversion material is an “infrared absorbing” compound. When the first layer contains a photothermal conversion material, i.e., a first material, the second layer may contain the same first material or a different photothermal conversion material, i.e., a second material. As used herein, the term “thermally sensitive” is intended to be synonymous with the term “heat sensitive”, and the term “image area(s)” is intended to mean the surface area(s) of the imaged plate which is ink-receptive. The plate is exposed in non-image area(s), i.e., areas outside the “image areas” which are not ink-receptive, typically with a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermal digital lithographic printing plate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermal digital lithographic printing plate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermal digital lithographic printing plate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2849115

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.